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Abstract

In lossy networks the probability of successful communication can be significantly increased by transmitting multiple copies
of a same message through independent channels. In this paper we show that communication protocols that exploit this by
dynamically assigning the number of transmitted copies of the same data can significantly improve the control performance in
a networked control system with only a modest increase in the total number of transmissions. We develop techniques to design
communication protocols that exploit the transmission of multiple packets while seeking a balance between stability/estimation
performance and communication rate. An average cost optimality criterion is employed to obtain a number of optimal protocols
applicable to networks with different computational capabilities. We also discuss stability results under network contention
when multiple nodes utilize these protocols.
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1 Introduction

In the new generations of wireless communications (3G
and 4G), channel adaptive techniques are able to pro-
vide large improvements under almost any performance
metric. These techniques utilize an adaptive allocation
of communication resources as the channel conditions
change with time. This paper explores a similar idea
in the context of networked control systems (NCS). In
addition to compensating for the uncertainty generated
by the channel, we aim at allocating communication re-
sources to compensate for the uncertainty being gener-
ated within the controlled process. These adaptive tech-
niques are well-suited for NCSs because they permit an
increase in the reliability of communication without in-
creasing the transmission delays, to which NCSs have
low tolerance.

Adaptation can be achieved by adjusting the transmit
power, by adaptive coding (an example of which is
changing the quantization coarseness) and by diversity
schemes, which correspond to the transmission of redun-
dant signals through mostly independent channel real-
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izations. Diversity schemes may involve using multiple
time slots, frequency slots, antennas or network paths
[17]. While many diversity schemes are dynamically
exploited in data networks by scheduling transmissions
according to the network status (see e.g. [7,20]), these
techniques do not take into account nor benefit from the
dynamical nature of NCSs. In this paper we focus on
diversity schemes and show that something as simple as
transmitting multiple independent copies of the same
packet can provide significant performance gains in the
context of NCSs.
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Fig. 1. NCS architecture

The adopted NCS architecture is depicted in Fig. 1,
which considers the case of a single sensor and a con-
troller. We assume that, by means of some diversity
scheme, a number of independent redundant channels
is available for data transmission. These are erasure
channels with independent identically distributed (iid)
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packet drops. At each time step, the sensor sends mea-
surements to the controller with a certain level of re-
dundancy. Further, by means of an acknowledgement
mechanism, the sensor knows which measurements were
received by the controller. Our focus is on deciding how
many redundant copies of a packet should be transmit-
ted at each sampling time and what benefits can be
drawn from this.

The basic intuition behind this work is that one can use
redundancy to increase the probability of a successful
transmission whenever the estimation error in the con-
troller becomes large. On the other hand, at time in-
stants for which the control performance is satisfactory,
one may send only one packet or not send data at all,
which would save communication resources. This adap-
tive behavior is desirable for NCSs because it improves
the reliability of transmissions without relying on error
correction schemes that induce delay in the transmis-
sions. Indeed, if a packet containing some measurement
data is dropped at a time instant, it is generally more
important from a control point of view to guarantee that
the measurements at the next time instant are delivered,
rather than to retransmit the old information that was
dropped previously.

For simplicity of presentation, we consider NCSs with
full local state measurements and no network delays.
However, the results obtained can be readily extended
to the case of partial state measurements, and delays in
the network by using a Kalman filter collocated with the
sensor and transmitting optimal estimates as suggested
by Xu in [19]. He and several authors (e.g. [14,6,10]) have
explored the idea of saving communication resources in
a NCS by scheduling transmissions in a judicious way.
However, these works do not consider the possibility of
redundant transmissions.

Our approach can be regarded as part of the real-time
rate-distortion theory introduced in [16] and further
pursued in many papers including [3,11,5]. While these
works share with ours a Markov Decision theory frame-
work, their focus is mostly on the encoding problem.
However, due to the nature of NCSs, data packets are
typically small to the point that no practical advantage
would be achieved by exploiting different encoders, that
spread information among many packets. In this way,
our work is distinct in that we consider erasure channels
and take packets as the basic information unit.

In the first part of the paper we focus our attention on
the problem of stabilizing a discrete-time linear time-
invariant process with a certainty equivalence control.
For such process it is well know that mean-square insta-
bility arises whenever the drop probability rises above
a certain threshold. Moreover, no matter how small the
drop probability is, some statistical moments of the pro-
cess’ state will always be unbounded. It turns out that
redundant transmissions can be used to stabilize any

given statistical moments for any probability of drop.
Surprisingly, we show that, by a judicious use of redun-
dant transmissions, this can be achieved with no signif-
icant increase in the average communication rate.

In the second part, motivated by the observation that the
redundant channels are rarely used and yet their avail-
ability provides significant performance gains, we discuss
the possibility of having multiple nodes sharing the re-
dundant channels. This is a natural practice to maximize
network efficiency but one must be aware that trans-
missions at the different feedback loops become interde-
pendent. Nevertheless, we provide protocols for which
mean-square stability is preserved for an arbitrary num-
ber of nodes sharing the same set of channels.

In the third part, we investigate optimal redundant
transmission protocols for the NCS. In this setting, the
controller constructs estimates of the process state us-
ing the measurements transmitted by the sensor. The
sensor, in turn, uses a redundant transmissions pro-
tocol that minimizes the weighted average cost of the
estimation error in the controller and the average com-
munication rate. First, we consider the ideal case in
which the sensor has enough computational power to re-
construct the state estimates available to the controller
from the acknowledgement information. Secondly, and
motivated by the fact that in some applications sensors
have very limited computational capabilities, we find
protocols that minimize the same cost but base their de-
cisions solely on the number of consecutive transmission
failures.

2 A linear NCS with redundant transmissions

Throughout the paper we consider a linear time-
invariant plant with

x(k + 1) = Ax(k) +Bu(k) + w(k) (1)

where x ∈ Rn denotes the state of the process, u ∈ Rn1

the control input, and w(k) ∈ Rn an n-dimensional zero-
mean Gaussian white noise process with positive definite
covariance matrix Σ. The pair (A,B) is assumed to be
controllable.

The controller and a sensor that measures the full state
x(k) are connected through a network that drops packets
independently of each other, with probability p ∈ (0, 1).
The state x(k) is assumed to be transmitted with negli-
gible quantization error. In order to “adjust” the proba-
bility that the measurement x(k) reaches the controller,
the sensor may transmit multiple copies of this message
through independent channels (see Fig. 1). The trans-
mitter is equipped with a feedback channel that allows it
to know which packets are dropped. We denote by `(k)
the number of consecutive transmission failures that oc-
curred immediately before time k, where a transmission
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failure is characterized by the failure of all the attempts
to transmit x(k) at time k.

We are interested in designing protocols that determine
how many identical packets to send at time k as a func-
tion of x(k) and `(k). We denote by v(k) the number
of redundant packets transmitted at time k. Under our
assumption of independent drops, the probability of a
transmission failure at time k is equal to pv(k).

We adopt a certainty equivalence control law of the form

u(k) = Kx̂(k) (2)

where the matrix K is chosen such that A+BK is Schur
and x̂(k) is an optimal estimate of x(k) based on the
measurements that successfully reached the controller
before time k. In particular,

x̂(k) := E
[
x(k)

∣∣x(s), s < k, s ∈ Tsuccess

]
(3)

where Tsuccess denotes the set of times at which the sen-
sor succeeded in transmitting the measured state to the
controller. This optimal state estimate can be computed
recursively using

x̂(k + 1) =

{
Ax̂(k) +Bu(k) if k 6∈ Tsuccess

Ax(k) +Bu(k) if k ∈ Tsuccess.
(4)

Subtracting (1) from (4), we conclude that the estima-
tion error e(k) := x̂(k) − x(k) evolves according to the
dynamics:

e(k + 1) =

{
Ae(k)− w(k) if k 6∈ Tsuccess

−w(k) if k ∈ Tsuccess.
(5)

The closed-loop dynamics (1)–(2) can be expressed in
terms of this error using

x(k + 1) = (A+BK)x(k) +BKe(k) + w(k). (6)

In the following sections we investigate stability and op-
timal estimation in this setting. From (6), our certainty
equivalence control guarantees a bounded covariance for
x(k) if e(k) has bounded covariance. One can verify that
this stability property is preserved if we replace the static
gain K by other stabilizing linear time-invariant con-
trollers.

3 Moment Stabilization Using Packet Redun-
dancy

In this section we investigate the stability properties of
redundant transmission protocols that can be specified
by a static law π that maps the number `(k) of consecu-
tive transmission failures to the number v(k) of packets

to send, i.e., v(k) = π(`(k)). For example, if we use the
identity function π(l) = l, then `(k) identical packets
will be sent at time k. In this paper, we do not exclude
the possibility of sending zero packets.

Theorem 1 shows that mean-square stability can be
achieved for any system matrix A and any drop proba-
bility p < 1 by a suitable choice of the redundant packet
transmission protocol that specifies the function π(·).

Theorem 1 Let the spectral radius of the matrix A be
denoted by a. The covariance of x(k) is bounded when
the following limit exists and satisfies

lim
l→∞

a2pπ(l) < 1 . (7)

Conversely, the covariance of x(k) is unbounded when
liml→∞ a2pπ(l) > 1.

In view of Theorem 1, all that is needed to guarantee
stability is to select π(`) sufficiently large for large values
of `, namely, we need to have

lim
l→∞

π(l) >
2 log a

− log p
. (8)

Proof. In view of (6) and the fact that A + BK in (6)
is Schur, it is sufficient to verify the boundedness of the
covariance matrix for e(k). We assume that a ≥ 1, since
otherwise the process would always be stable regardless
of drops. From (5), we have that

Q`(k) := E
[
e(k)e(k)′

∣∣ `(k)
]

= E
[ `(k)∑

m=0

Amw(k −m)


·

 `(k)∑
m=0

Amw(k −m)

′] =

`(k)∑
m=0

AmΣA′m . (9)

The process `(k) is itself a Markov chain that takes val-
ues in the set of non-negative integers, with transition
probability given by

Pr
(
`(k+1) = l|`(k)

)
=


pπ(`(k)) l = `(k) + 1 (drop)

1− pπ(`(k)) l = 0 (no drop)

0 otherwise
(10)

Let µ denote the stationary probabilities of the infinite
Markov chain `(k). By definition, we have

µ(l) =

∞∑
m=0

Pr(`(k + 1) = l|`(k) = m)µ(m) . (11)
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From (10) we see that there is only one nonzero term in
the above sum when l > 0:

µ(l) = pπ(l−1)µ(l − 1) . (12)

Iterating (12) and using the fact that
∑∞
l=0 µ(l) =1, we

obtain

µ(l) = p
∑l−1

m=0
π(m)µ(0), l ≥ 1 (13)

µ(0) =

(
1 +

∞∑
l=1

p
∑l−1

m=0
π(m)

)−1

. (14)

Here we only have to consider the case liml→∞ π(l) ≥ 1
since, in the case liml→∞ π(l) = 0, the process would
reach an open-loop state with positive probability and
become unstable. This assumption guarantees that the
series in (14) converges and that µ is well defined.

Since π(l) ≥ 1 for l large enough, there is a positive
probability that the Markov chain `(k) will return to the
state l = 0 for all k larger than some constant L. This
implies that the chain is aperiodic and positive recurrent
in the language of [13]. In view of the ergodic theorem
in [13, Thm. 14.3.3], these properties allow us to use the
invariant probability µ when we take the limit

lim
k→∞

E [e(k)e(k)′] = lim
k→∞

E
[
Q`(k)

]
=

∞∑
l=0

µ(l)Ql .

(15)

From this and (9), we conclude that

lim
k→∞

E [e(k)e(k)′] =

∞∑
l=0

µ(l)

l∑
m=0

(AmΣA′m) . (16)

For any submultiplicative matrix norm ‖ · ‖, (16) gives

‖ lim
k→∞

E [e(k)e(k)′] ‖ ≤ ‖Σ‖
∞∑
l=0

µ(l)

l∑
m=0

(‖Am‖2) .

(17)
By Cauchy’s root test, this series is convergent if

lim
l→∞

µ(l)
1
l ‖Al‖2/l = a2 lim

l→∞
pπ(l) < 1 , (18)

where the equality comes from (13) and the fact that
a=limk→∞ ‖Ak‖1/k. This gives the first part of the the-
orem. The second part can be deduced by pre- and post-
multiplying (16) by the eigenvector corresponding to a
and then using the root test to conclude divergence of
the resulting series.

For the stability of higher moments, one can obtain con-
ditions analogous to (8) with a similar proof.

Remark 1 One factor that may alter our results is the
presence of failures in the acknowledgement mechanism.
While there may be many ways to deal with this issue,
such as using redundancy in the acknowledgement chan-
nel, one can always adopt the conservative approach of
using positive acknowledgements. This approach pre-
serves stability since it sends necessarily more packets
than in the case of perfect acknowledgements.

From (8), we can see that to achieve stability one may
require a protocol that, at times, sends a large number of
packets, which seems to require a large communication
rate. To verify that this is not the case, we investigate the
expected communication rate for a given function π(·).
We assume that the packet size is a constant with value
1 and that it is sufficiently large so that the controller
receives x(k) with negligible quantization loss.

Theorem 2 Suppose that a2pM < 1 for some integer
M . Then, for every integer N ≥ 0, there exists a protocol
with π(l) ≤M that stabilizes the covariance of x(k) with
an expected asymptotic transmission rate:

R̄ := lim
L→∞

1

L

L−1∑
k=0

E[π(`(k))] = O(1/N) , (19)

which can be made arbitrarily small by choosing N suffi-
ciently large.

While we can obtain an arbitrarily small communication
rate, the larger we makeN the larger the error covariance
will be. This relationship between average transmission
rate and control performance is the subject of Sections
5 and 6.

Proof. Consider the protocol

π(l) =

{
0 for l < N

M for l ≥ N .
(20)

From Theorem 1, this is a stabilizing protocol. As in the
proof of Theorem 1, we use the ergodicitiy of the chain
to compute the expected asymptotic transmission rate
as R̄ =

∑∞
l=0 µ(l)π(l). Then, (13)-(14) gives

R̄ = µ(0)

(
v(0) +

∞∑
l=1

π(l)p
∑l−1

m=0
v(m)

)
. (21)

Substituting (20), we have that

R̄ =
M

N(1− pM ) + 1
, (22)

which gives the result in the theorem.
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A transmission rate as slow as (19) may not be possible
when the quantization errors cannot be neglected. This
is because, when many consecutive failures take place,
one may need to increase the packet size to maintain a
“reasonable” quantization error in spite of an exponen-
tial growth in the state.

4 Redundant Protocols with Multiple Nodes

Theorem 2 indicates that redundant protocols may need
to utilize redundant channels quite rarely. This suggests
that some of these channels could be shared by other
feedback loops without compromising performance. In
this section we explore the situation in which multiple
processes share the redundant channels.

Consider the case where S feedback loops (also referred
here as nodes) share M iid channels. We say that a pro-
tocol that determines the number vi(k) of redundant
transmissions used by the node i as a function of the
number of consecutive failures `i(k) is L-drop triggered
if it satisfies the following property:

S(k) :=
{
i ∈ {1, . . . , S} : `i(k) > L

}
6= ∅

⇒
∑
i∈S(k)

vi(k) = M , (23)

i.e. the nodes {i : `i(k) > L} that experience more than
L consecutive failures share all the M channels among
themselves.

L-drop triggered protocols do not necessarily share the
M channels fairly. However, the condition (23) does re-
quire these protocols to efficiently utilize the M chan-
nels without collisions. Condition (23) also forbids nodes
with less than L consecutive failures to transmit any
messages when some loops have suffered more than L
failures. This would be possible either for a protocol that
assigns the vi(k) in a centralized fashion or for a decen-
tralized protocol that takes advantage of the capture ef-
fect [21] so that, even if multiple nodes access the same
channel, one of them is still able to successfully use it.

We are interested in evaluating under what conditions
L-triggered protocols stabilize the estimation error in
the mean-square sense. Somewhat surprisingly, we show
next that stability can be achieved independently of the
number of processes S in the network. Let Ai be the
system matrix of the i-th process and ai its spectral
radius. Then we define a = maxi≤S{ai}.

Theorem 3 Suppose that M channels are available and
denote by p the dropout probability for each independent
channel and assume that a2pM < 1. Then, for any num-
ber of feedback loops S, there always exists an integer L
such that any L-drop triggered protocol stabilizes the es-
timation error in the mean-square sense.

Proof. We start by assuming thatL > 2S and a > 1. For
Q` given in (9), we have that ‖Q`‖ ≤ ‖Σ‖(1−a2)−1(1−
a2`) and E[e(k)e(k)′] = E[Q`(k)]. Then, to prove mean-
square stability, it suffices to prove the boundedness of
E[W (`(k))], where the Lyapunov function W (`) is de-
fined as W (`) = a2V (`) and V (`) := maxj≤S `j . To this
purpose, we evaluate W+(l) := E[W (`(L)) | `(0) = l].

By noticing that V (`) may increase by as much as L in
L time steps, we can write

W+(l) ≤ β(l)a2(V (l)+L) + (1− β(l)) · a4L

= a2Lβ(l)W (l) + (1− β(l)) · a4L , (24)

where β(l) is the probability that {V (`(L)) > 2L} given
the initial condition l. Denoting by PL the maximum
value of β(l) over l, we have from (24) that

W+(l) ≤ a2LPLW (l) + a4L . (25)

Taking expected values on both sides with respect to l
and using the time-homogeneity of the chain, we con-
clude that

E [W (`((k + 1)L))] ≤ a2LPL E[W (`(kL))] + a4L (26)

Therefore, E[W (`(k))] is bounded provided that

a2P
1/L
L < 1 . (27)

Now we compute an upper bound PL on the probability
of the event Z := {V (`(L)) > 2L | `(0) = l}. The worst
case occurs when lj > L,∀j, since then all nodes have to
transmit successfully at least once to prevent the eventZ
from happening. Since, for an L-drop triggered protocol,
each node can transmit successfully only once in L time
steps (unless maxj `j becomes less than L), Z, when
lj > L, ∀L, corresponds to the occurrence of less than
S successful transmissions in L time steps. As we only
care about the total number of transmissions regardless
of which nodes transmit, the probability of less than S
transmissions in L time steps is maximized for the L-
drop triggered protocol in which one node takes over all
M channels in a given time step (thus transmitting with
probability 1− pM ). Therefore, we have that

PL =
∑
i<S

Pr{i nodes transmit in L steps}

=
∑
i<S

(
L

i

)
(1− pM )i pM(L−i)

≤ (S − 1)
( L

S − 1

)
pM(L−S+1) , (28)
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where the inequality is obtained by majorizing each el-
ement of the sum (using the fact that S < L/2 to ma-
jorize the binomial). Taking the limit L→∞, we have

lim
L→∞

P
1
L

L ≤ lim
L→∞

( L

S − 1

) 1
L

pM(L−S+1)/L = pM .

(29)

Since a2pM < 1, one can always choose L large enough
to satisfy (27). This proves the theorem for a > 1. For
a = 1, we can use a dominance argument noting that
there exists ā > 1 such that ā2pM < 1.

For scenarios in which capacity is degraded by collisions,
a stability result will depend on the specifics of the com-
munication system. As in (27) in the proof of Theorem

3, stability will depend on the quantity limL→∞ P
1/L
L ,

which is closely related to the notion of anytime relia-
bility in [15].

5 Optimal Communication Protocols

In the last two sections, we have seen that it is possible
to stabilize one or several processes in the mean-square
sense, with very few communication resources. However,
this may lead to large error covariances. Our goal now
is to determine an optimal protocol for the single node
case that decides how many copies of the same packet to
send. This protocol should be optimal in the sense that
it achieves an optimal trade off between the conflicting
objectives of keeping small the estimation error e(k) that
drives the closed-loop dynamics (6) while achieving this
with a minimal amount of communication.

To compute the optimal communication protocol, we
start by noting that the estimation error e(k) can be
seen as a Markov Decision Process in the sense of [9],
with transition probabilities controlled by the number
v(k) of redundant packets. In particular,

e(k + 1) =

{
Ae(k)− w(k) with prob. pv(k)

−w(k) with prob. 1− pv(k).

(30)

We consider protocols that decide how many packets to
send based on the current value of the estimation error
e(k). Such protocols can be viewed as functions π that
define v(k) = π(e(k)), ∀k. The state estimation error
e(k) can be calculated by the sensor using (4) and `(k).

Our objective is the minimization of the following aver-
age cost (AC) criterion

J(π, e0) := Jest(π, e0) + λJcom(π, e0) (31)

where

Jest(π, e0) := lim
N→∞

1

N
Eπe0

[N−1∑
k=0

e(k)′Qe(k)
]

(32)

Jcom(π, e0) := lim
N→∞

1

N
Eπe0

[N−1∑
k=0

v(k)
]

(33)

where λ is a positive scalar, Q a positive definite matrix
and Eπe0 denotes the expectation given a protocol π and
an initial state e(0) = e0.

The criterion in (31) is a weighted sum of two terms:
the first term Jest(π, e0) penalizes a time-averaged ex-
pected quadratic estimation error, whereas the second
term Jcom(π, e0) penalizes the average communication
rate, measured in terms of the number of messages sent
per unit of time. The constant λ allows one to adjust the
relative weight of the two terms. As λ → 0, communi-
cation is not penalized, whereas as λ → ∞, communi-
cation is heavily penalized. Intermediate values of λ will
yield Pareto-optimal compromise solutions between the
two conflicting criteria.

Defining the one-step cost

c(e, v) := e′Qe+ λv , (34)

we can rewrite the cost function (31) as follows

J(π, e0) = lim
N→∞

1

N
Eπe0

N−1∑
k=0

c(e(k), v(k)) . (35)

For technical reasons, we restrict the optimization prob-
lem to the set of protocols that satisfy

π(e) ∈ Π(e) :=

{
{0, . . . ,M} if ‖e‖ < L

{M} if ‖e‖ ≥ L ,
(36)

where M denotes the maximum number of redundant
packets possible and L > 0 is a constant. This restriction
ensures that M packets are sent when ‖e‖ grows as large
as L, but our results allow L to be arbitrarily large. The
set of protocols that obey (36) is denoted by Γ.

A protocol π∗ ∈ Γ is said to be AC-optimal if

J(π∗, e0) = inf
π∈Γ

J(π, e0) =: J∗(e0), ∀e ∈ Rn, (37)

and J∗ is called the optimal AC-function.

Next we provide a brief review of results in average cost
optimization. The reader is refered to [9] for an in depth
treatment. For functions ϕ : Rn → R, we denote by
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T v̄ϕ(ē) the expected value of ϕ(e(k+ 1)) given e(k) = ē
and v(k) = v̄, i.e.,

T v̄ϕ(ē) := E[ϕ(e(k + 1)) | e(k) = ē, v(k) = v̄)] , (38)

and by ∆v̄ϕ(e) we denote the expected one-step varia-
tion of the function ϕ:

∆v̄ϕ(e) = T v̄ϕ(e)− ϕ(e) . (39)

It follows readily from (30) that

T v̄ϕ(e) =

∫
Rn

ϕ(e)[(1− pv̄)f(e)de+ pv̄f(e−Aē)de] ,

(40)
where f is the probability density of the normal distri-
bution with zero mean and covariance Σ.

For a protocol π, suppose that there exist a function ϕ
and a constant % such that

% ≥ c(e, π(e)) + ∆π(e)ϕ(e) . (41)

It follows from [13, Thm. 14.2.2] that J(π, e) ≤ %, i.e, %
is an upper bound on the average cost achieved by the
protocol π.

Bellman’s equation for the average cost problem takes
the form

%∗ = min
v∈Π(e)

[c(e, v) + ∆vϕ∗(e)]

=: c(e, π∗(e)) + ∆π∗(e)ϕ∗(e), ∀e ∈ Rn , (42)

where ϕ∗ is known as the relative value function and the
average cost is given by the constant %∗. Under suitable
conditions, (42) implies that π∗ is AC-optimal [1, Thm.
5.1].

A possible solution method for (42) is the value iteration
algorithm below. Let sN be defined as follows:

sN (e) := min
v∈Π(e)

[c(e, v) + T vsN−1(e)] , (43)

where s0 ≡ 0. Let z ∈ Rn be an arbitrary but fixed
state. Define a sequence of constants jN and a sequence
of functions ϕN (e) as

jN := sN (z)− sN−1(z) and ϕN (e) := sN (e)− sN (z) .
(44)

Then, the value iteration algorithm is said to converge if

lim
N→∞

jN → %∗ and lim
N→∞

ϕN (e)→ ϕ∗(e), ∀e, (45)

for some ϕ∗ and %∗ satisfying (42).

Our next theorem states the existence of a solution to
(42) and of an AC-optimal protocol as long as one has
enough channels to stabilize the process.

Theorem 4 Suppose that the number of channels M in
(36) is sufficiently large so that

a2pM < 1 . (46)

Then:

(1) There exists a constant %∗ ≥ 0, a continuous func-
tion ϕ∗ and a protocol π∗ ∈ Γ that satisfy equation
(42).

(2) π∗ is AC-optimal and %∗ is the optimal AC-function
(which happens to be constant).

(3) The given value iteration algorithm converges.

The proof of this is based on results from [18] and in-
volves finding a common Lyapunov function for all pro-
tocols in Γ. Due to space constraints, we provide this
proof in [12, Theorem 19]. Furthermore, in this reference
we show that the optimal protocol given by the theorem
is optimal even if time-varying and randomized proto-
cols are considered.

5.1 Suboptimal Protocols

Solving for the optimal protocol in Theorem 4 may be
computationally intense for high-dimensional systems.
Fortunately, one can exploit the linear structure of the
controlled plant to find suboptimal protocols that are
computationally tractable. To this purpose, we consider
quadratic relative value functions of the form ϕ̄ = e′He,
where H is a positive definite matrix. As in (41), an
upper bound on the optimal cost is given by the constant
%̄ that satisfies

%̄ ≥ min
v∈Π(e)

[c(e, v) + ∆vϕ̄(e)]

= min
v∈Π(e)

[e′Qe+ λv + pve′A′HAe− e′A′HAe+ trHΣ] .

(47)

While one could search numerically for a matrix H for
which (47) holds with the smallest possible %̄, our numer-
ical examples in Section 7 were obtained by simply tak-
ing H = Hs, where Hs is the solution to the Lyapunov
equation pMA′HsA −Hs + Q = 0. The motivation for
this choice is that ϕs = e′Hse approaches the solution
to (42) as e grows to infinity (or as λ approaches zero).
Alternatively, ϕs could also be obtained as a result of ap-
plying just one iteration of the policy iteration algorithm
(see [9]) initialized with the protocol π0(e) ≡M, ∀e.

From (47), the resulting suboptimal protocol is

πs(e) = arg min
v∈Π(e)

{λv + pve′A′HsAe} , (48)
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The protocol πs is considerably simpler to compute
than π∗ and it offers the additional benefit of a smaller
(memory-wise) representation.

6 A Simplified Optimal Protocol

In many applications, sensors have limited computa-
tional capabilities that could prevent the use of elabo-
rate protocols that require the computation of estima-
tion errors as those considered in Section 5. To address
this issue, we can design a simplified protocol that bases
its decision rule only on the consecutive number of fail-
ures `(k) that occurred prior to the k-th sampling time,
much like the protocols considered in Section 3.

In general, this approach would lead to a partially ob-
servable MDP. Fortunately, due to the special structure
of the problem, we show that it is enough to consider
a fully observable process. We consider two controlled
Markov chains, one whose state is simply `(k) and an-
other one whose state is the pair

(
e(k), `(k)

)
. Let Γ` de-

note the set of stabilizing feedback protocols for which
v(k) depends only on {`(s); s ≤ k}. For π ∈ Γ` and the
chain `(k), define the average cost

J`(π, `0) = lim
N→∞

1

N
Eπ`0

∞∑
k=1

c̄(`(k), v(k)) , (49)

where the one-step cost is given by

c̄(l, v) = tr(QΣl) + λv , (50)

where

Σl :=

l∑
m=0

A′mΣAm . (51)

Theorem 5 For every protocol π ∈ Γ`,

J(π, e0) = J`(π, `0), ∀e0, `0 , (52)

where J is the original cost in (31). Therefore, an AC-
optimal protocol for the cost J` and the chain `(k) is
also an AC-optimal protocol for the cost J and the chain
(e(k), `(k)) within the set of protocols Γ`.

Proof. We can rewrite our cost criterion (35) as

J(π, e0) = lim
N→∞

1

N
Eπe0

∞∑
k=1

Eπe0
[
c(e(k), v(k))

∣∣ `(k)
]
.

(53)
Once a packet is successfully transmitted, the belief
(conditional probability) of e(k) is solely given by f(e),
through (30), and it does not depend on any previous be-
liefs. Hence, the average cost criterion does not depend

on the initial belief. Thus, without loss of generality, we
can calculate the average costs assuming that `0 = 0
and e0 has distribution f(·). For this initial condition,

e(k) is conditionally distributed as
∑`(k)
m=0A

m(k)ωm
given `(k), where ωm are i.i.d. variables with density
f(·). Then, Eπe0

[
c(e(k), v(k))

∣∣ `(k) = l
]

= c̄(l, v) and
the claim of the theorem follows from (53) and (49).

If we further restrict the set of protocols to be such that
v = M for ` ≥ T , we no longer need to keep track of
the number of consecutive drops `(k) when it exceeds
T . We can therefore truncate the Markov chain `(k) by
redirecting the jumps (` = T ) → (` = T + 1) to (` =
T ) → (` = T ). Thus, we have moved from the infinite
dimensional problem in Section 5 to an optimization in
a finite Markov chain. Using the per-stage cost c̄ in (50)
and the transition probabilities for ` in (10), one can
calculate AC-optimal protocols that depend on ` only.
This could be done either via dynamic programming [2]
or via direct optimization, since the average costs can be
directly calculated using the stationary distribution as in
Section 3. Interestingly, once c̄ is known, the complexity
of solving for the optimal protocol does not depend on
the dimension n of the dynamical system, but only on T
and on the size M + 1 of the set of control actions.

In general, the designer can select the constants M and
T to be small. This is so because the probability of failure
pM becomes indistinguishably small for M larger than
some small constant, typically 3. Likewise, the probabil-
ity of reaching a state ` = T also decreases exponentially
with T . An important consequence of the set of control
actions being small is that one can solve for the optimal
protocol offline and then use small look-up tables. The
same observations also apply to the optimal protocols in
the previous section.

Remark 2 When solving an optimal control problem
with quadratic costs, the separation principle does not
hold in the setting of Section 5 since the communication
protocols may depend on x(k). On the other hand, the sep-
aration principle does hold in the context of the simplified
protocols of this section. To see why, note that, for each
fixed simplified protocol, we have a Markov Jump Linear
System, for which the separation principle is known to
hold [8]. As it turns out that the optimal control and op-
timal estimator do not depend on the fixed protocol, the
separation principle holds for the general problem.

7 Numerical Examples

It is common to guide autonomous vehicles indoors
based on global position information captured by sen-
sors (e.g., cameras) mounted off-board. The results in
the paper are exemplified in this context, by studying
the problem of estimating the position of a vehicle based
on the acceleration provided by on-board sensors and
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“occasional” global position measurements from an off-
board camera network (with communication through an
unreliable camera network). We consider the two dimen-
sional example with A = [1 1; 0 1], Σ = [0.75 0; 0 0.75],
Q = [1 0; 0 1], p = 0.15 and L = 10, where x repre-
sents the position and the velocity of a vehicle moving
on the line, u represents accelerations (due to control
and external forces) measured by the inertial sensors
and w represents measurement noise in the inertial sen-
sors. The state information transmitted by the camera
network is assumed to have much higher precision com-
pared with the one provided by the on-board sensors.

By varying λ from 10−5 to 10, we constructed the Pareto
frontiers for the protocols described in Sections 5 and
6. The curves are shown in Fig. 2, where protocols are
restricted to the different action sets v ∈ {1, 2}, v ∈
{1, 2, 3} and v ∈ {0, 1, 2}. Some important observations
can be deduced from this figure:

(1) The simplified optimal protocol discussed in Sec-
tion 6 produces protocols that can be quite close to
the Pareto-optimal boundary.

(2) Increasing the maximum number of redundant
packets beyond 2 hardly improves the Pareto-
optimal boundary.

(3) If we were to allow no transmissions at some time
instants (i.e., v(k) ≥ 0 instead of v(k) ≥ 1) then one
could further improve the optimal Pareto-optimal
boundary (dash-dotted line in Fig. 2).

A phenomenon that commonly arises in multi-objective
MDPs is that points on the Pareto frontier do not always
correspond to deterministic protocols. This is the case
for the Pareto frontier of the simplified protocol, where
only the points marked with a cross correspond to de-
terministic protocols and the lines linking those points
correspond to randomized protocols that can be derived
from the deterministic ones as explained in [4].

Suboptimal approaches have been considered in Fig. 3.
To show the performance improvement that arises from
judiciously sending redundant information, we consid-
ered also the baseline protocol that always sends one
packet per time step. Some observations from this figure
are:

(1) The suboptimal protocol πs in (48) gives a perfor-
mance remarkably close to the Pareto frontier and
is significantly better than the simplified protocols.

(2) Using the trivial protocol v(k) = 1, ∀k, leads to
less communication (x-axis) than the protocols that
use v ∈ {1, 2} and v ∈ {1, 2, 3}, but this is at the
expense of a significantly larger estimation error
(y-axis). In fact, based on the results of Section 3,
we know that for unstable systems and large drop
probabilities, v(k) ≡ 1 can lead to instability.

(3) The steep slope of the Pareto frontier at communi-
cation cost 1 indicates that a large percentual de-

crease in estimation cost can be obtained with a
small percentual increase in communication cost.
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Fig. 2. Pareto Frontiers for: optimal protocol with v ∈ {1, 2}
(solid); optimal protocol with v ∈ {1, 2, 3} (dashed); optimal
protocol with v ∈ {0, 1, 2} (dash-dotted); simplified optimal
protocol with v ∈ {1, 2, 3}, ` < T = 5, and v = 3 for
` ≥ T = 5 (cross).
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Fig. 3. Optimal vs. suboptimal protocols: optimal protocol
with v ∈ {1, 2, 3} (dashed); simplified optimal protocol with
v ∈ {1, 2, 3}, ` < T = 5, and v = 3 for ` ≥ T = 5 (cross);
suboptimal protocol πs with v ∈ {1, 2, 3} (solid); protocol
v(k) = 1 ∀k (square); TCP with no delay (circle); TCP with
delayed retransmission (diamond).

7.1 Redundant Transmissions vs. Retransmissions

The motivation for using redundant transmissions as op-
posed to retransmissions (such as in TCP) is that NCSs
performance may suffer due to the delay accumulated
in the transmission, error detection, acknowledgements
and retransmission.
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To provide some intuition on how the protocols described
here compare with TCP we consider two idealized TCP-
like protocols. In the first protocol, we consider a TCP-
like scheme in which it is always possible to perform one
transmission of x(k) and, if necessary, at most one re-
transmission before the sampling time k + 1. At time
k + 1, the measurement x(k + 1) is available at the
sensor for transmission and the old measurement x(k)
is discarded (regardless of whether it was successfully
transmitted). In the second scheme, a retransmission of
x(k) is only received at time k + 1 so it cannot be used
until time k + 2. Hence, the retransmitted message is
only used if the message containing x(k+ 1) is dropped.
We assume that original and retransmitted packets are
dropped with i.i.d. probabilities with the same value as
in the redundant channels above.

The results are shown in Fig. 3. The delay free TCP
scheme outperforms the redundant transmission proto-
cols for a large region of cost combinations. On the other
hand, a one-time-step delay is already enough to have
the TCP scheme outperformed by the redundant proto-
cols. In practice, many things can go wrong with TCP
such as random delays and correlation between drops,
which in our framework would imply a higher probability
that the retransmitted packets are not used (dropped).
Irrespectively of these implementation issues, redundant
protocols offer the advantage of flexibility in the choice
of different estimation and communication costs com-
binations by selecting different operating points within
the Pareto boundary.

8 Conclusions and Future Work

We introduced new communication protocols for net-
worked control systems that adjust the probability of
successful communication by the transmission of redun-
dant packets. We considered protocols that optimize an
average cost criterion that seeks to improve the control
performance while reducing the transmission rates. Two
different types of protocols were proposed, one for nodes
with reasonable computational capabilities and a much
simpler one that is suitable for nodes with limited com-
putational capabilities. These results can be readily ex-
tended to the case of partial state measurements and
delays in the network by following the procedure in [19].
Our results also suggest that redundant channels may
be efficiently shared among multiple feedback loops.

The proposed technique has a diminishing returns prop-
erty in the sense that little additional benefits are ob-
tained by increasing the number of redundant channels
beyond two or three. This implies that, as opposed to
what one could expect, implementing a large number of
channels is not necessary to obtain significant perfor-
mance gains using our technique.

Future work includes constructing other forms of adap-

tive channel techniques such as varying the transmitter
power or using different codes depending on the history
of communications between nodes. It is also important
to address the case when the drops for different packets
are not independent of each other. This would be im-
portant to study communication faults due to collisions
when this type of redundancy strategy is simultaneously
employed by different nodes.
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