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Abstract

Exploiting Stochasticity in Multi-agent Systems
Alexandre Rodrigues Mesquita

To control multi-agent systems one can exploit the recurrence properties of
stochastic processes. We illustrate this principle through two applications. In both
applications, systems are modeled as hybrid systems where Markov transitions on
the discrete variables depend on the continuous variables.

In the first application, stochasticity is introduced to overcome uncertainty
about the environment. Inspired by bacterial chemotaxis, we design algorithms
that control the spatial distribution of mobile agents that can take point mea-
surements of a monitored function but cannot measure their own positions. Ap-
plications include source-seeking, monitoring and deployment. We prove that the
probability density of agents is led to converge exponentially to a predetermined
function of the measurements, much like in Markov Chain Monte Carlo methods.
In the process of designing these control algorithms, we prove results on piecewise
deterministic Markov processes that can find application outside this particular
design problem.

In the second application, we control the level of stochasticity in a networked
control system. Given that the probability of successful communication can be
significantly increased by transmitting multiple copies of the same message, we
show that, by dynamically assigning the number of transmitted copies of the same
data, one can obtain significant performance gains with only a modest increase in
the total number of transmissions. We develop techniques to design communica-
tion protocols that exploit the transmission of multiple packets, while seeking a
balance between stability/estimation performance and communication rate. An
average cost optimality criterion is employed to obtain a number of optimal pro-
tocols applicable to networks with different computational capabilities. Other
capacity scheduling techniques are also explored.
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Chapter 1

Introduction

In the recent years, teams of autonomous vehicles have been considered to solve a
number of problems including environmental monitoring, agricultural tasks such
as crop spraying, search and rescue in disaster response, law enforcement and
surveillance. While the technology for the construction of unmanned vehicles is
now relatively mature, endowing these machines with the intelligence necessary
to realize the above tasks is an extremely hard problem, which has become one of
the major challenges in the fields of control and artificial intelligence. The reason
for such complexity lies in the fact that agents have access only to local informa-
tion or to information that is exchanged using faulty communication networks.
This imperfect nature of information typically makes the computation of optimal
solutions intractable. In this monograph, we propose solutions to two distributed
control problems that have the potential to reduce the impact of these issues in
multi-agent applications.

In our first problem, uncertainty in a spatial environment (that agents can
only sense locally) is overcome by the introduction of stochasticity. In the same
way that randomized policies are often needed in adversarial games, we propose
that agents use randomized solutions to “play” against an uncertain environment.
This is also the principle utilized in randomized optimization algorithms, which
introduce stochasticity to avoid solutions that become trapped by local optima.
Using only local information, we are able to induce agents into an ergodic behavior
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Chapter 1. Introduction

in such a way that the frequency agents visit a certain region is proportional to
the “importance” of that region to the task being executed.

The practical impossibility of computing optimal solutions for many multi-
agent systems has motivated researchers to look for solutions in nature, taking into
consideration that living organisms have spent millions of years specializing in the
realization of similarly complex tasks. Following these lines, our first solution takes
inspiration from the bacterium E. Coli, one of the most ancient living organisms.

Our second problem deals with communication failures, and we show that
agents may benefit by treating the capacity of communication channels as a vari-
able to be controlled. Essentially, agents are able to control the statistics of
the communication channel depending on the criticality of the information being
transmitted. This solution is more suited to multi-agent systems rather than to
traditional networked control systems because in this domain missions are typi-
cally heterogenous in time and the importance of the data being transmitted may
vary significantly with time. Moreover, due to the agents mobility, channel quality
may also change and, therefore, agents can profit greatly from adapting the use of
communication resources (power, bandwidth, etc.) to realize energy savings and
improve the lifetime of their energy sources.

Our solution to this problem draws inspiration from the adaptive techniques
in the 3G and 4G networks. In these standards, significant performance gains are
obtained by adapting transmissions to the state of the channels using techniques
such as multiple antennas (MIMO), dynamic channel allocation and channel de-
pendent scheduling. In our solution, however, we are adapting transmissions both
to the stochastic realization of the channel and to the stochastic realization of the
process being controlled.

To motivate our solutions, consider Figure 1.1, where a team of vehicles is
tasked to find the source of a radio signal. Agents have limited sensing in that
they can only infer their distance to the source using the strength of the measured
signal. Instead of requiring all vehicles to converge to the source, we are satisfied

2



Chapter 1. Introduction

if we achieve a high density of vehicles in a neighborhood of the source. Our first
solution allows agents to accomplish this objective independently, without direct
cooperation, and is suited for cases in which agents are unable to measure their
own position or to communicate with each other.

  

Figure 1.1: Source-seeking by a team of agents using range measurements

Suppose now that agents are able to exchange their position information and
distances to the source. In this case, they can infer their relative position with
respect to the source by calculating the intersection point of the dashed circles.
However, failures in communication may render agents into a temporary “open
loop” mode. Our second solution proposes that agents can modulate their ability
to successfully transmit messages among themselves (e.g., by simultaneously us-
ing several independent communication channels) to avoid or remedy sequential
communication failures and therefore keep the distance to the target bounded.

3



Chapter 1. Introduction

1.1 Dissertation Overview

Next, we provide a brief summary of the contributions in this mongraph.

1.1.1 Multi-agent Solutions by Controlling Agents Proba-

bility Density

We consider agents whose only observation is a scalar non-negative output z =

q(x), where x is the state of the agent and q(·) is some function. Both x and
q(·) are unknown to the agent. The control objective is to achieve a steady-state
probability density for the state x that matches the function Z(q(·)) up to a
normalization factor, where Z is a function chosen by the designer. The state x

typically includes the position of the agent, which can take point measurements
z = q(x) at its current location.

This type of control objective can be used to solve numerous problems in the
area of mobile robotics under very limited measurement models. Indeed, our
formulation does not require agents to communicate or to have measurements of
their current position or of the gradient of q.

In deployment problems, a group of such agents is required to distribute them-
selves in an environment based on the value of these measurements, e.g., the
measurements may be the concentration of a chemical agent and one wants the
robots to distribute themselves so that more robots will be located in areas of
higher concentration of the chemical agent. A natural choice here is Z(q) to be a
monotone function that maps the measurement value to the desired density.

In search problems, a group of agents is asked to find the point at which
the measurement has a global maximum (or minimum), in which case one wants
the probability density function of x to have a sharp maximum at the point x
where q(x) is maximum (or minimum). These applications are often referred to
as “source seeking” motivated by scenarios in which the robots attempt to find
the source of a chemical plume, where the concentration of the chemical exhibits

4



Chapter 1. Introduction

a global maximum. The natural design choice for Z(q) is some power qn, where
the exponent n > 1 should be large to accentuate the global maxima of q.

In monitoring problems, one attempts to estimate the value of a spatially-
defined function by keeping track of the positions of a group of robots whose
spatial distribution reflects the spatially-defined function of interest (much like
in deployment applications). Potential applications for this work thus include
chemical plant safety, hydrothermal vent prospecting, pollution and environmental
monitoring, fire or radiation monitoring, etc. A possible design choice is Z(q) = q.

1.1.2 Jump Control of Probability Densities

To accomplish the above control objective, we must design some control m such
that the state x, governed by the differential equation

ẋ(t) = f(x(t),m(t)) ,

has its probability density controlled to the desired function. One of the novelties
of our approach is the use of a stochastic supervisor that decides the probability
that one should switch between different control values m, which is inspired by
bacterial chemotaxis.

Suppose that the control space is some compact set M equipped with a prob-
ability measure ν such that supp ν = M. Then, we show that a necessary and
sufficient condition for the existence of a solution to the control problem is that
1)
∫
M f(x,m) ν(dm) = 0 for all x and 2) the control system ẋ = f(x,m) is ap-

proximately controllable, i.e., one can steer the state from any initial condition to
any given open set.

Under these conditions, we provide a simple algorithm that is proven to ac-
complish our control objective. For the case in which f has zero divergence, this
algorithm reads as follows.

1. Initialize the algorithm with τ 0 = t = 0, k = 0 and some constant η > 0.

5



Chapter 1. Introduction

2. Draw a random variable m̄ from the distribution ν and set m(t) = m̄.

3. Draw a random variable rk uniformly distributed in the interval [0, 1].

4. When the output z(t) satisfies

Z(z(t)) ≤ rk e
η(t−τk)Z(z(τ k)), t ≥ τ k , (1.1)

increment k, set τ k = t and return to step 2.

In proving the convergence of such algorithms, we derive novel results that
contribute to the ergodic theory of Piecewise-Deterministic Markov Processes.
We present a new method for the construction of Lyapunov functions for such
processes based on the maximization of a certain notion of rate of convergence.
This method allowed us to construct a Lyapunov function to prove exponential
ergodicity of the controlled process.

1.1.3 Bio-inspiration and New Insights on Chemotaxis

The construction of our stochastic supervisory control draws inspiration from the
chemotactic behavior of the bacterium E. coli, i.e., the mechanism by which this
bacterium responds to chemical stimuli in order to move toward higher concen-
trations of nutrients. In turn, our results allow one to advance new conclusions
about bacterial chemotaxis.

The fact that bacteria use a control similar to (1.1) indicates that bacteria
evolved towards the control of probability densities. For bacteria, this objective
may be useful to either find food as in search applications or, as in deployment
applications, to distribute the population of bacteria so to maximize the amount
of nutrients per individual.

Our results also support the conclusion that controls like (1.1) are intimately
related to the experimental observation that bacterial chemotaxis obeys Weber’s
law, which states that the absolute response of a sensory system to a stimulus is
proportional to the logarithm of the stimulus.

6



Chapter 1. Introduction

As a practical application, we employ our results to predict the behavior of
recently proposed bacterial actuators, where bacteria are used to move a mi-
crostructure attached to their cell surface.

1.1.4 Communication Protocols Using Redundant Trans-

missions

To prove the potential of adaptive techniques in networked control systems (NCS),
we consider the problem of controlling a linear time-invariant plant over a net-
work of erasure channels. As depicted in Figure 1.2, the sensor has the freedom to
transmit redundant copies of the same message through a number of independent
channels. Our main concern is the design of protocols that select the number of
redundant channels as a function of the system history. As our main contribu-
tion, we show that channel adaptive techniques, which are already used in data
networks, can provide significant performance gains in control networks.

Plant Sensor
Channel 1

Channel 2

Channel 3

Network

Controller

Figure 1.2: Architecture of the Networked Control System

The basic intuition behind this technique is that one can use redundancy to
increase the probability of a successful transmission whenever the estimation error
in the controller becomes large. On the other hand, at time instants for which
the control performance is satisfactory, one may send only one packet or not send
data at all, which would save communication resources. This adaptive behavior
is desirable for NCSs because it improves the reliability of transmissions without
relying on error correction schemes that induce delay in the transmissions. Indeed,

7



Chapter 1. Introduction

if a packet containing some measurement data is dropped at a time instant, it is
generally more important from a control point of view to guarantee that the
measurements at the next time instant are delivered, rather than to retransmit
the old information that was dropped previously.

If M is the number of available channels and p is the drop out probability for
each independent channel, we show the existence of protocols that stabilize the
state covariance if

a2pM < 1 , (1.2)

where a is the spectral radius of the system matrix. Moreover, no stabilizing
protocol exists if

a2pM > 1 .

This implies that any process can be stabilized given a large enough numberM of
redundant channels. Under mild assumptions, we also show that the same exact
stability criterion is valid for an arbitrarily large number of plants sharing the
redundant channels.

To design protocols that take into account the conflicting objectives of mini-
mizing the estimation error covariance in the controller and minimizing the com-
munication resources expended by the sensor, we adopt an average cost criterion
that minimizes a weighted cost of error covariance and communication rate. We
show that optimal protocols exist if (1.2) is satisfied and that these protocols can
be well approximated by protocols that use quadratic value functions and that
can be constructed using numerically efficient procedures.

To implement the optimal protocols above, a sensor must compute the esti-
mation error made by the controller. Since this may be an issue depending on
the size of the state of the process or on the computational capabilities of sensors,
we also propose optimal protocols that are allowed to depend only on the num-
ber of consecutive transmission failures. As numerical results show, both type of
protocols can improve control performance with little additional communication
costs.

8



Chapter 1. Introduction

The proposed technique has a diminishing returns property in the sense that
little additional benefits are obtained by increasing the number of redundant chan-
nels beyond two or three. This is so because the probability of failure pM becomes
indistinguishably small for M larger than some small constant, typically 3. This
implies that, as opposed to what one might expect, implementing a large num-
ber of channels is not necessary to obtain significant performance gains using our
technique.

1.1.5 A Framework for General Capacity Scheduling

Beyond redundant data transmissions, we propose a general framework to exploit
the idea of capacity scheduling. Consider the control system

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) + b(k)ω(k) + v(k) ,

where x is the state, y is the output received by the controller, u and b are
control inputs, w is the process noise, v is the measurement noise and ω is the
noise resulting from the network transmission and A,B and C are the system
matrices. In this formulation, we can regard the probability density of b(k)ω(k)

as being controlled by means of varying the transmit power, the quantization or
coding scheme, or the number of repeated packets. The cost associated with using
a certain control b will depend on the method used to control capacity.

Since solving for optimal controls for this type of system is computationally
hard, we exploit the linearity of the system to propose computationally tractable
suboptimal policies.

1.2 Literature Review

In this section we provide a brief review of methods in multi-agent systems with
a focus on the similarities and differences with respect to our approaches.

9
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1.2.1 Markov Chain Monte Carlo and alike

A substantial body of work related to the objective of controlling probability
densities can be found in the literature of Markov Chain Monte Carlo (MCMC)
methods [38]. These methods involve the design of a Markov chain whose sta-
tionary distribution is given by a known (but usually hard to compute) function.
Samples from the Markov chain are then used to estimate integrals associated
with that function. MCMC is largely used in statistical physics and in Bayesian
inference.

According to the classification in [72], our jump control approach can be re-
garded as a dynamical/hybrid MCMC type method. In particular, the hit-and-run
method [90] resembles some of our algorithms in that it also executes a piecewise
linear random walk. The main difference between our approach and traditional
MCMC is that the latter is a numerical method whereas the former is intended
to be used in physical systems with dynamic constraints.

An interesting distinction is given by the classic Metropolis-Hastings algo-
rithm [38]. This algorithm samples the space using a random walk and generates
a process with distribution Z(q) by discarding samples according to a given rule.
Remarkably, the rule to discard samples is exactly the same as (1.1). The distinc-
tion is that our algorithm cannot physically discard samples; instead, it “discards”
the control input.

The well-known optimization method of simulated annealing is also commonly
cast as a MCMC technique in which the target distribution qn is progressively
changed by increasing n to infinity along iterations [88]. A similar shaping of the
target distribution is adopted here for search problems.

Our work also has connections with the field of reinforcement learning, espe-
cially with TD or Q-learning where unknown value functions are identified using
only local observations of the cost function [15], and with the fields of Hidden
Markov Models and particle filters, where one seeks the convergence of condi-
tional distributions.

10
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The idea of looking at the aggregate distribution of multiple agents modeled
as stochastic hybrid systems has also appeared in [61] and subsequent works.

1.2.2 Deployment and Environmental Monitoring

An overview of the problems and solutions in the fields of distributed robotics
and swarm robotics can be found in [18] and [78], respectively. The main reasons
to utilize this type of solutions are the robustness to failures in individual agents
and the ability to operate simultaneously in different regions of the space, which
makes the execution of more complex tasks possible.

Our deployment problem corresponds to the coverage control problem de-
scribed in [18]. Typical solutions involve partitioning the space in Voronoi cells,
placing agents at their center and updating the partition in order to optimize some
coverage criterion. The main drawback of this type of technique is its communi-
cation and computational cost and the use of position information.

This coverage problem of mobile sensor networks has been considered in many
other papers, most notably in [46], where a potential field is used to control
the agents distribution. In [37], extremum seeking was considered to solve a
deployment problem in which one desires to distribute agents on the neighborhood
of the peak of the measured field.

In monitoring applications, mobile sensors replace a network of fixed sensors in
situations that would demand an extremely high number of spatial samples. The
main focus here is on deciding how to sample the space, in a problem analogous to
the sensor deployment in fixed networks. A simple gridding technique was utilized
to sweep the space in [85], where the problem of pollution monitoring using a
robot equipped with an electronic nose was tackled experimentally. However,
uniform grids are typically inefficient and more sophisticated sampling methods
have been proposed in a series of papers dealing with the so-called Networked Info
Mechanical System (NIMS), a cable-based robotic system used to monitor forests
[11, 75, 80, 81]. To improve upon gridding methods, adaptive sampling schemes
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are proposed in [75] and [81], where one does not need to have information on the
environment beforehand. A path planning problem with the goal of maximizing
the collected information is solved in [80]. A heuristic sampling method motivated
by bacterial chemotaxis was proposed in [28].

Our solution to environmental monitoring is distinct in that it is based on
MCMC. As such, the function being monitored is sampled more often at points
with higher value (or importance). This is especially interesting if one must cal-
culate integrals of the monitored function. Indeed, MCMC is regarded as the
computational method of choice to integrate a function in high dimensions [38].

1.2.3 Source-Seeking and Chemotaxis

Classical techniques from numerical optimization have been adapted for single-
and multi-vehicle search strategies when gradients are not explicitly available [19,
82, 63]. In [19], the local gradient is estimated by means of a circular movement.
The simplex method is implemented with a network of autonomous vehicles in
[82]. However, this approach requires the ability to measure the vehicles’ relative
position. Mayhew et al. [63] proposed a hybrid control algorithm to perform a
conjugate directions method without position measurements. This control was
further extended to non-holonomic vehicles in [64].

Many other approaches have also been considered. A sliding mode control is
presented in [62]. A deterministic approach for ascending/descending potential
fields is proposed in [10] with control expressions that are reminiscent of ours.
Control algorithms for networks of vehicles inspired by collective behavior such as
fish schooling and chemotaxis are designed in [45, 9, 96]. Statistical approaches
have also been proposed for the case of turbulent environments, but assuming the
availability of vehicle’s position measurements [74, 91].

An extremum seeking strategy is adopted in [98]. This strategy is reminiscent
of our solution in that it utilizes a circular motion to indirectly estimate gradients.

12
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In general, when convergence is proven in the above references, this is done ex-
clusively under the assumption that the signal spatial profile is convex or quadratic-
like.

Bio-inspired techniques have a strong appeal in optimization. Examples are
the well-known genetic algorithms and the solutions for the traveling salesman
problem inspired by ant colonies [32]. Inspiration by chemotaxis is not a new
approach to the source-seeking problem, see e.g. [45, 91, 71, 28]. In [45], chemo-
taxis inspires the use of an Iterated Function Systems approach to lead a group of
agents to equilibrium. Agents are also able to communicate in this work. In [91],
agents move in the direction of the maximum expected information gain. In [71],
a neural network approach is used to program nematode-like robots to perform
chemotaxis. In [28], a biased random walk inspired by E. coli ’s chemotaxis is
implemented in robots.

Whereas the previous works on chemotaxis-based source-seeking rely on a
heuristic approach and do not give convergence guarantees, our technique allows
one to effectively control the probability density of the vehicle’s position to a
specified density whose peak coincides with the maximum of the measured signal.

1.2.4 Transmission Scheduling

Several authors (e.g. [7, 22, 47, 93, 4]) have explored the idea of saving com-
munication resources in a NCS by scheduling transmissions in a judicious way.
However, these works do not consider the possibility of redundant transmissions
or other means of scheduling capacity.

In [7], the concept of Lebesgue sampling is introduced as an alternative to
periodic (Riemann) sampling. The problem of minimizing the estimation error
given a constraint on the total number of transmissions is considered in [47]. Most
notably, [93] formulates transmission scheduling as a Markov Decision Process
approach as in this monograph. A similar approach is considered in [22], where
a suboptimal policy that approximates the optimal one by a constant factor is
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derived. With respect to [93, 92], we obtain theoretical advances that prove the
existence of optimal policies even for the case of packet drop outs. In [4], actuation
times are scheduled as opposed to transmission times.

When scheduling transmissions, one should be aware that the very action of
not transmitting data already conveys information to the controller, which raises
an issue of whether the separation principle holds or whether a Kalman filter
solution is optimal. The optimality of a Kalman-like filter was proven for a scalar
process in [60] using symmetry arguments.

1.2.5 Adaptive Techniques in Data Networks

Many modern communication systems use channel feedback in order to improve
performance. At the channel level, adaptation is typically achieved by adjusting
the transmit power, by adaptive coding and by diversity schemes, which consist of
the transmission of redundant signals through mostly independent channel real-
izations. Diversity schemes may involve using multiple time slots, frequency slots,
antennas or network paths [86, 39].

Adaptation is especially advantageous in mobile networks to cope with time-
varying fading in channels. Such adaptive techniques require that an estimate of
the channel be made at the receiver and then sent to the transmitter. Based on
the channel state, the transmitter allocates communication resources. Two basic
adaptive techniques present in GSM and CDMA systems as well as wireless LANs
are adaptive modulation and coding [39]. Channel feedback is also particularly
important in MIMO systems, where multiple transmit and receive antennas are
used.

In multiuser systems, techniques referred to as multiuser diversity or channel
dependent scheduling assign the right of transmission to the users with the best
channel gains in order to maximize throughput.

The diversity techniques above exploit the availability of multiple propagation
paths with diverse quality. Analogously, networks often present multiple paths
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with diverse performance. The use of path diversity for media streaming was first
proposed in [5]. A scheduling problem for streaming media using path diversity
was addressed in [20]. This use of diversity is similar to ours in the sense that it
is application aware.

A number of adaptive techniques for data networks have used a Markov deci-
sion process framework similar to ours. In [21], an optimal rate-distortion problem
for media streaming is considered. The problem of transmission scheduling over
fading channels was considered in [53], where the cost was a tradeoff among aver-
age transmission power, average delay and average packet dropping. The problem
of optimal power and rate allocation in MIMO systems over Markovian fading
channels was considered in [30].

The main distinction of our work with respect to the above is that we do
adaptation for control applications, which have different requirements than data
transmission or media streaming, instability being one of the main concerns.
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Chapter 2

Stochastic Hybrid Systems:
Stability and Control

Stochastic Hybrid Systems (SHS) are traditionally thought of as Markov processes
evolving on a space that includes both continuous and discrete variables. In
this monograph, we consider SHSs in a broader sense, namely, these are Markov
processes whose state space is the product of spaces with inherently different
topologies. The case of continuous and discrete variables is certainly an instance of
this definition. A second instance that we deal with in this monograph are hybrid
systems in which some variables are defined on the Euclidian space and others
are defined on the unit sphere. We address these systems under the framework of
general state-space Markov processes. This chapter describes the basic concepts
of this theory, along with the main results concerning stability and control of these
processes. A class of hybrid system that we will pay particular attention to is that
consisting of Piecewise-Deterministic Markov Processes.

2.1 Markov Processes in General Spaces

We consider a time-homogeneous Markov process Φ(t)1 taking values in a locally
compact separable metric space Y equipped with a Borel σ-algebra B. Because
most of the concepts and results are analogous for discrete and continuous time,

1In this monograph we will consistently use boldface symbols to denote random variables.
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we present them simultaneously and hence assume that t ∈ T, where T may be
either Z+ or R+. For every t ∈ T, we assume that Φ(t) is a random variable on
the measurable space (Ω,F), where F = σ{Φ(t); t ≥ 0}, and, for every y ∈ Y,
there is a probability measure Py on (Ω,F) such that Py{Φ(0) ∈ A} = 1A(y), the
indicator function of A ∈ B. Expectations with respect to Py are denoted by Ey.
The process is described using the transition semigroup {P t}t∈T, where P t are the
transition kernels

P t(y, A) := Py{Φ(t) ∈ A}, y ∈ Y, A ∈ B ,

and P t are assumed to be measurable functions of y for fixed t and A. Viewed
as an operator, the kernel P t operates on measurable functions h : Y → R and
signed measures µ on B according to

P th(y) :=

∫

Y

h(z)P t(y, dz) and µP t(A) :=

∫

Y

P t(y, A)µ(dy) .

Acting either on functions or measures, these operators form a semigroup that
satisfies the Chapman-Kolmogorov identity P t+s = P tP s. A more intuitive inter-
pretation is given by the equalities

P th(y) = Ey{h(Φ(t))},

and
µP t(A) = Prµ{Φ(t) ∈ A},

where Prµ denotes the probability given that Φ(0) has distribution µ. We also
assume that Φ(t) is measurable on Ω×T, from which it follows that t 7→ P t(y, A)

is measurable for fixed y and A.

To address long term properties of the process we define the resolvent chain
ξ(n) := Φ(τ n) as the process obtained by sampling {Φ(t)} at a sequence of times
{τ n}, where τ n+1−τ n are i.i.d. random variables with probability measure aθ, for
some parameter θ > 0. For discrete time, aθ(τ) := (1−θ)e−θτ , and, for continuous
time, aθ(dτ) = θe−θτ`(dτ), where ` denotes the Lebesgue measure. The resulting
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resolvent chain has a one-step transition probability given by the resolvent kernel

Rθ =

∫

T
P t aθ(dt) .

Intuitively, the resolvent kernel can be regarded as a Laplace transform of the
transition kernel. As a discrete-time process, the resolvent chain is an instrument
that allows the extension of many discrete-time results to the continuous-time
setting.

2.1.1 Invariant Measures and Ergodic Theory

Two of our main concerns in this monograph are the steady-state behavior of the
processes and the consistency of measurements obtained from the process. In this
section we define the concept of invariant measures and discuss how they relate
with the time averages of measurements of a process.

We say that a σ-finite measure µ is an invariant measure for P t if

µ = µP t ∀t ≥ 0 .

A set A ∈ B is said to be invariant with respect to P t if P t(y, A) = 1 for all
y ∈ A and t > 0. An invariant probability measure µ is said to be ergodic if, for
every invariant set A, µ(A) = 0 or µ(A) = 1. In particular, it is true that every
invariant measure is a convex combination of ergodic measures [42, Chapter 5].

The following theorem is a version of the law of large numbers for discrete-time
Markov processes. Its fundamental importance lies in the fact that observations of
a particular realization of the process are consistent with its ergodic measures in
the sense that time averages of observables converge almost surely to the ensemble
average.

Theorem 1 ([42], Thm. 5.4.1). Suppose that µ is an ergodic probability measure
for Φ(n). Then, for every test function h ∈ L1(µ), there exists a measurable set
Yh ⊂ Y such that µ(Yh) = 1 and, for every initial condition y ∈ Yh,

n−1

n−1∑

k=0

h(Φ(k))→
∫

Y

h dµ Py-a.s. (2.1)
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Moreover, for the set of bounded continuous test functions, the result holds with
some set Y′ independent of h.

By applying Theorem 1 to polynomial test functions h, one concludes that the
time averages that appear in the left-hand side of (2.2) can be used to construct
consistent estimators for the moments of the stationary measure of the process.
Further, this result also provides a methodology to construct a consistent esti-
mator for the invariant measure itself. To achieve this, we define the empirical
measure µ(n) by

µ(n)(A) = n−1

n−1∑

k=0

1A(Φ(k))

for every A ∈ B. Thus, since the left-hand side of (2.2) is equal to the expected
value of h with respect to the empirical measure µ(n), we have that (2.2), when
restricted to the set of bounded continuous test functions, gives precisely the
definition of weak convergence of µ(n) to µ [42]. We formulate this result in the
following corollary.

Corollary 1. If µ is an ergodic measure, then the empirical measure µ(n) con-
verges weakly to µ almost surely for every initial condition in Y′.

By taking the expectation in Corollary 1 we have that also the law of the
process converges weakly to µ in the Cesàro sense (i.e., convergence of the partial
averages). This result is traditionally known as the mean-ergodic theorem.

For continuous-time processes, one can state ergodic theorems analogous to the
one above [83, Thm. 6.1.26]. In practice, more important than the convergence
in continuous time is the convergence of the sampled processes, which, for the
aperiodic processes defined in the next section, always follows from the continuous-
time convergence.
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2.2 Drift Conditions for Ergodicity

In this section we recapitulate the concepts of irreducibility and ergodicity of a
process and present some Foster-Lyapunov criteria to ensure ergodicity.

2.2.1 Irreducibility, Recurrence and Continuity

For a nontrivial σ-finite measure ψ, we say that Φ is ψ-irreducible if, for all
A ∈ B,

ψ(A) > 0⇒ R1(y, A) > 0, ∀y ∈ Y .

We shall assume that ψ is a maximal irreducibility measure, i.e, any other ir-
reducibility measure is absolutely continuous with respect to ψ. This notion of
irreducibility is a generalization of irreducibility for stochastic matrices. In the
context of stochastic matrices, ψ has positive measure for every element in the
space.

For a ψ-irreducible process, we denote by B+ the set of measurable functions
s : Y → R+ such that ψ(s) :=

∫
Y
s(y)ψ(dy) > 0. A function s ∈ B+ and a positive

measure ν on B are called small if

Rθ(y, A) ≥ s× ν(y, A) := s(y)ν(A), y ∈ Y, A ∈ B ,

for some θ > 0. We call C ∈ B a petite set if there is a small function s of the
form s = b1C , for a constant b > 0. Petite sets are numerous. Indeed, every set A
such that ψ(A) > 0 contains a petite set [69]. In many applications, it turns out
that every compact set is petite. This is the case, for example, for the irreducible
T -processes defined later in this section.

We say that a ψ-irreducible process Φ is aperiodic if, for some petite set C
such that ψ(C) > 0, there exists a a time T such that P t(y, C) > 0, for all t ≥ T

and y ∈ C.

We define the occupancy time of a set A ∈ B as

ηA :=

∫

T
1A{Φ(t)} dt ,
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where dt denotes the integration with respect to the Lebesgue measure or the
counting measure for the continuous-time process and the discrete-time one, re-
spectively. A ψ-irreducible process is called recurrent if Ey[ηA] = ∞ for all
y ∈ Y and A such that ψ(A) > 0. The process is called Harris recurrent if
Py{ηA =∞} = 1 for all y ∈ Y and A such that ψ(A) > 0. When Φ is ψ-irreducible
and admits an invariant probability measure, we say that Φ is positive.

For positive Harris recurrent processes, we can establish stronger convergence
results than those in Theorem 1.

Theorem 2 ([69], Thm. 17.0.1). Suppose that Φ is a positive Harris recurrent
chain with invariant probability measure µ. Then, for every test function h ∈
L1(µ) and every initial condition y, we have that

n−1

n−1∑

k=0

h(Φ(k))→
∫

Y

h dµ Py-a.s. (2.2)

We say that Φ is a T-chain (process) if, for some sampling distribution θ,

Rθ(y, A) ≥ T (y, A), y ∈ Y, A ∈ B ,

where T (·, A) is a lower semicontinuous function for all A ∈ B and T (y,Y) > 0

for all y ∈ Y. We say that Φ is (weak) Feller if P t maps the set of bounded
continuous functions on Y into itself.

Through the following series of results, these two continuity properties play an
important role in the analysis done in this monograph.

Proposition 1 ([69], Thm 6.0.1). If Φ is a ψ-irreducible Feller chain such that
suppψ has non-empty interior, then Φ is a ψ-irreducible T-chain.

Proposition 2 ([69], Thm. 9.3.2). If Φ is a T-chain (process) and T (y, A) > 0

for some y ∈ Y, then there is a neighborhood O of y and a distribution θ such that

inf
y′∈O

Rθ(y
′, A) > 0

and, moreover, A is reached from O in finite time with positive probability.

21



Chapter 2. Stochastic Hybrid Systems: Stability and Control

A set H is called maximal absorbing if

y ∈ H ⇐⇒ {ηH =∞} Py-a.s.

A setH is calledmaximal Harris set ifH is maximal absorbing and Φ restricted to
H is Harris recurrent. One important property of T-processes is that they admit
the following decomposition, commonly known as the Doeblin decomposition.

Theorem 3 ([67, 69], Thm. 3.4, Thm. 9.2.2). Suppose that Φ is an irreducible
T-process. Then, the state space may be decomposed into the disjoint union:

Y = H ∪ E , (2.3)

where H is a maximal Harris set with invariant measure µ and

Py{{Φ→∞} ∪ {ηH =∞}} = 1, y ∈ Y .

We prove next that E must be open.

Lemma 1. The set E in the decomposition (2.3) is an open set.

Proof. Suppose that E is not open. Then, there is y ∈ E such that O∩H 6= ∅ for
every neighborhoodO of y. Since y ∈ E andH is maximal absorbing, P t(y, E) > 0

for all t > 0. Then, by Proposition 2, there exists a neighborhood O of y and a
distribution θ such that Rθ(y0, E) > 0 for all y0 ∈ O ∩ H. This contradicts the
fact that H is maximal absorbing. Therefore, E must be open.

2.2.2 W -Ergodicity and Exponential Ergodicity

Consider a function V : Y → [1,∞]. For a measure µ on B and a function
ϕ : Y → R, we define the weighted V -norms

‖µ‖V = sup
|h|≤V

∣∣∣∣
∫

Y

h dµ

∣∣∣∣ and ‖ϕ‖V = sup
y

|ϕ(y)|
V (y)

.
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For a real function W ≥ 1 on Y, we say that Φ(t) is W -ergodic if Φ is positive
Harris recurrent with invariant probability measure µ such that

lim
t→∞
‖P t(y, ·)− µ‖W = 0 ∀y ∈ Y . (2.4)

We say that Φ(t) is V -exponentially ergodic if there exists V : Y → [1,∞],
finite for at least one y ∈ Y, an invariant probability measure µ, and constants
B0, b0 > 0 such that

‖P t(y, ·)− µ‖V ≤ B0V (y)e−b0t, ∀y ∈ Y, t ∈ T . (2.5)

If Φ is V -exponentially ergodic with V (y) finite for all y ∈ Y, then we say that Φ

is exponentially ergodic. If we denote by L∞V the space of functions with bounded
V -norm, we can regard P t as a bounded linear operator in L∞V . We can then
rewrite (2.5) as the convergence in operator norm:

‖P t − 1× µ‖V ≤ B0e
−b0t, t ∈ T ,

where ‖ · ‖V denotes the induced norm in L∞V .

2.2.3 Drift Conditions for Ergodicity

We define the extended generator L of Φ as follows. The domain D(L) is defined
as the set of functions h : Y → R such that there exists a measurable function
g : Y → R for which the process

h(Φ(t))− h(Φ(0))−
∫ t

0

g(Φ(s)) ds

is a local Martingale with respect to the filtration {Ft = σ(Φ(s) : 0 ≤ s ≤ t)}t∈T.
The value of the generator is then denoted Lh := g. For discrete time, the
extended generator is simply L = P − I, where I denotes the identity operator.
For continuous time, this is an extension of the infinitesimal generator L̂, which
is defined as

L̂h := lim
t→0

P th− h
t

, h ∈ D(L̂) ⊂ B(Y) ,
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where B(Y) is the set of bounded measurable Borel functions on Y equipped with
the supremum norm.

We define the drift conditions :

(D1) For a small function s and a function W ≥ 1, the function V : Y → R+

verifies
LV ≤ −W + s

and

(D2) For a constant c > 0, a small function s, the function V : Y → [1,∞)

verifies
LV ≤ −cV + s .

The drift conditions allow us to write the following ergodic theorems.

Theorem 4 ([68, 55]). Suppose Φ is ψ-irreducible and aperiodic. Then, the fol-
lowing conditions are equivalent

i. Φ is positive Harris recurrent with invariant probability measure µ and µ(W ) <

∞;

ii. condition (D1) is satisfied for some function W ;

iii. Φ is W -ergodic.

Theorem 5 ([33, 55]). Suppose Φ is ψ-irreducible and aperiodic. Then, the con-
dition (D2) satisfied for some function V is equivalent to V -exponential ergodicity.

2.3 Piecewise-Deterministic Markov Processes

In this monograph we consider an important class of continuous-time Stochastic
Hybrid Systems known as Piecewise-Deterministic Markov Processes (PDP). Our
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definition of PDPs follows closely the framework introduced in [25] and extended
in [48]. In a PDP, state trajectories are right-continuous with only finitely many
discontinuities (jumps) on a finite interval. The continuous evolution of the pro-
cess is described by a deterministic flow whereas the jumps occur at randomly
distributed times and have random amplitudes. The PDPs considered in this
monograph are a simplified version of those defined in [25], since we do not allow
processes to have deterministic jumps.

We consider state variables x ∈ X = Rd and m ∈M so that Y = X×M, where
M is a compact set. During flows, the continuous state x(t) evolves according
to the vector field f(x,m), whereas the discrete state m(t) remains constant and
changes only with jumps. For a fixedm ∈M, we denote by ϕt(x,m) the continuous
flow at time t defined by the vector field f(·,m) and starting at x at time 0. The
conditional probability that at least one jump occurs between the time instants t
and s, 0 < s < t, given x(s) and m(s), is

1− exp

(
−
∫ t

s

λ(ϕτ−s(x(s),m(s)),m(s))dτ

)
, (2.6)

where the nonnegative function λ(x,m) is called the jump rate at (x,m) ∈ X×M.
At each jump, the overall state ξ := (x,m) assumes a new value distributed
according to the jump kernel Q. Namely, if we define the process {Tn} to denote
the time of the n-th jump, then

Pr(ξ(Tk) ∈ A | ξ−(Tk) = ξ) = Q(ξ, A)

for A ∈ B, where the superscript minus indicates the left limit of a processes.
With some abuse of notation, we use the symbol Q to denote the operator given
by Qh(y) =

∫
h(ξ)Q(y, dξ) for h ∈ B(Y).

This PDP model is captured by several stochastic hybrid system models that
appeared in the literature, including the stochastic hybrid models discussed in [44],
or the general stochastic hybrid models introduced in [17]. One main difference of
PDPs with respect to general stochastic hybrid systems is that they do not allow
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5

0. The conditional probability that at least one jump occurs between the time instants t and s,

0 < s < t, given x(s) and m(s), is

1 − exp

(
−

∫ t

s

λ(ϕ
m(s)
τ−s x(s),m(s))dτ

)
, (1)

where λ(x, m) is called the jump rate at (x, m) ∈ X × M. At each jump, m assumes a new

value governed by the jump pdf Tx(·, ·). Namely, if a jump occurs at time τ k, then

Pr
{
m(τ k) ∈ B | x−(τ k) = x,m−(τ k) = m

}
=

∫

B

Tx(m
′, m) ν(dm′) , (2)

where the superscript minus indicates the left limits of the respective processes, ν is a Borel

probability measure on M and B is a Borel set. We further assume that the space M is a compact

subset of a locally compact separable metric space and that supp ν = M. Note that, as opposed

to [14], we do not require M to be countable. Under this more general setting, [15] shows that

the above characterization defines a strong Markov process (x(t),m(t)).

This PDP model is captured by several stochastic hybrid system models that appeared in the

literature, including the stochastic hybrid models discussed in [16], or the general stochastic

hybrid models introduced in [17]. Fig. 1 depicts a schematic representation of our PDP.

ẋ = f(x,m)

ṁ = 0

λ(x,m)

m ∼ Q(ξ−, ·)

Fig. 1. Hybrid automaton for the PDP [fix font size in draft mode]

We define p(x, m, t) as the joint probability density of the state (x, m) at time t. Denoting

by % the Lebesgue measure in X, we have that
∫
X×M p(x, m, t) %(dx)ν(dm) = 1, ∀t ≥ 0. We

denote by L1(X × M) the space of real functions integrable with respect to % × ν.

In our setting, the vector field f is given and m(t) should be viewed as a control variable. The

controller cannot measure the state x directly; instead, an observation variable y(t) = g(x(t))

is available. In general, the function g(x) is not known to the controller, which only has access

to y(t).

November 14, 2010 DRAFT

Figure 2.1: Hybrid automaton for the PDP

a diffusion term, i.e., they do not have a Wiener process component. Fig. 2.1
depicts a schematic representation of our PDP.

Under the standard assumptions in Assumption 1, it was proven in [25] that
the defined PDP is a strong Markov process and a Borel right process [see [79] for
the definitions].

Assumption 1. i. x 7→ f(x,m) is locally Lipschitz for each m ∈ M and ϕt

admits no finite escape time.

ii. λ : Y → R+ is a measurable function such that the map t 7→ λ(ϕt(x,m),m)

is locally integrable.

iii. The probability kernel Q is such that Q(ξ, {ξ}) = 0 for ξ ∈ Y.

iv. Eξ [
∑∞

k=0 1{Tk ≤ t}] <∞ for all t > 0 and ξ ∈ Y.

Throughout this monograph, we assume that Assumption 1 holds for every
PDP. Assumption 1 (ii) holds immediately when λ is uniformly bounded, which
is true in most of the cases considered here. Since we do not consider the case
of spontaneous jumps, it is always possible to redefine the jump rate λ so that
Assumption 1 (iii) is satisfied. Assumption 1 (iv) also follows from the uniform
boundedness of λ. Even when λ is unbounded but continuous, the possibility of
infinitely many jumps in finite intervals can be ruled out by showing that the
process is nonexplosive by considering stopped processes as in [68].

26



Chapter 2. Stochastic Hybrid Systems: Stability and Control

The extended generator of the PDP was first characterized in [25]. For path-
differentiable functions h, define the operator

Dϕh(x,m) :=
d

dt
h(ϕt(x,m),m)

∣∣∣∣
t=0

.

Then we can state the following theorem.

Theorem 6 ([25],§26.14). The domain of the extended generator of the PDP ξ
consists of measurable functions h satisfying

1. The map t 7→ h(ϕt(x,m),m) is absolutely continuous for all (x,m) ∈ Y.

2. The process ∑

Tn<t

h(ξ(Tn))− h(ξ−(Tn))

is locally integrable.

The extended generator is given by

Lh = Dϕh+ λQh− λh (2.7)

for h ∈ D(L).

The second condition characterizing h on D(L) is verified if, for example,
Qh−h is bounded. In the case h is differentiable, Dϕ reduces to the more familiar
f · ∇x.

Next we discuss the adjoint of the generator, which defines a generalized
Fokker-Planck-Kolmogorov equation that governs the evolution of probability den-
sities. Here it is important to make explicit the structure of the space M. We
consider M to be a compact subset of a locally compact separable metric space
equipped with a Borel probability measure ν such that supp ν = M. With this
structure, a function p(x,m, t) satisfying

∫
X×M p(x,m, t)`(dx)ν(dm) = 1 is a joint

probability density of the state (x,m) at time t. Note that, as opposed to [25],
we do not require M to be countable. This more general setting for PDPs is
supported by the theory developed in [48].

To formulate the next result we need to strengthen Assumption 1.
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Assumption 2. It is assumed throughout this monograph that:

i. f and ∇xf are continuous functions on X×M;

ii. There exists a kernel Q∗ such that

`× ν(dξ)Q(ξ, dξ′) = `× ν(dξ′)Q∗(ξ′, dξ) .

Theorem 7. A continuously differentiable probability density p(x,m, t) is a pdf
for (x(t),m(t)) if and only if it satisfies the following generalized Fokker-Planck-
Kolmogorov equation:

∂p

∂t
+∇x · fp = −λp+Q∗(λp) , (2.8)

where the divergence operator ∇x · is taken with respect to the variable x only.

A derivation of this equation may be found in [36, Sec. 3.4]. A more general
treatment for stochastic hybrid systems is given in [12].

When f(x,m) = vm ∈ [−1, 1], (2.8) has an important role in linear transport
theory, where it models particles moving with constant velocity vm and colliding
ellasticly [52, 70]. In this case, regarding p as the density of particles, (2.8) has a
simple intuitive interpretation: on the left-hand side we find a drift term ∇x · vmp
corresponding to the particles’ straight runs, on the right-hand side we find an
absorption term −λp that corresponds to particles leaving the state (x,m), and
an integral kernel Q corresponding to the particles jumping to the state (x,m).

2.4 Markov Decision Processes

In this section we consider a discrete-time Markov control model (X,B, {B(x) :

x ∈ X, P, c}). The state space X and the action space B are both Borel sets; for
a fixed x, B(x) ⊂ B denotes the set of admissible actions for the state x. We
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assume that the set K := {(x, b) : x ∈ X, b ∈ B(x)} is a Borel subset of X × B.
Given b ∈ B(x), P (·|x, b) is a probability transition kernel on the state space X.
The one-step cost c is a positive measurable real function on K.

A control policy π is a sequence of rules to choose admissible controls b(n) as a
function of the process history {x(n), (x(k),b(k)); 0 ≤ k < n}. In general, control
policies may be time-varying and stochastic. We denote by Π the set of all policies
and by Π0 the set of stationary policies, i.e., policies that satisfy b(n) = g(x(n))

for some measurable function g : X→ B that verifies the constraint g(x) ∈ B(x).
For stationary policies, we write simply π = g.

For a fixed policy π ∈ Π and an initial state x ∈ X, there exist a stochastic
process (x(n),b(n)) on K and a corresponding a probability measure Pπx defined on
the sample space (Ω,F), where Ω = (X×B)∞ and F is the product σ-algebra, and
Pπx is compatible with the transition kernel P . We denote by Eπ

x the corresponding
expectation operator. In the case π is stationary, x(n) is a Markov process and we
denote by Pπ(·|x) := P (·|x, π(x)) the corresponding probability transition kernel.
We also write cπ(x) = c(x, π(x)).

We define the following average cost (AC) minimization criterion

J(π, x) := lim sup
N→∞

1

N
Eπ
x

[N−1∑

k=0

c(x(k),b(k))
]
.

A policy π∗ is said to be AC-optimal if

J(π∗, x) = inf
π∈Π

J(π, x) =: J∗(x), ∀x ∈ X,

and J∗ is called the optimal AC-function. The goal of the theory of Markov
Decision Processes (MDP) is to find optimal policies. In this monograph we
consider mainly average cost criteria, but discounted cost criteria are also widely
adopted in the MDP theory. The discounted cost criterion is given by

Jγ(π, x) := Eπ
x

[ ∞∑

k=0

γnc(x(k),b(k))
]
,
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where γ < 1 is a constant. Discounted cost problems and average cost problems
are typically related in that, under the proper regularity conditions, the optimal
policies for the discounted problems converge to the AC-optimal policy as γ → 1.

The existence of AC-optimal policies is the subject of a vast literature. Here
we present an approach that requires a somewhat minimal set of hypotheses.

Assumption 3. There exists a measurable function V : X→ [1,∞), a nontrivial
positive measure ν on B(X), a nonnegative measurable function s on K, and a
positive constant δ < 1 such that

i. ‖c‖V <∞.

ii. ν(V ) <∞.

iii. P (C|x, b) ≥ ν(C)s(x, b), (x, b) ∈ K and C ∈ B(X).

iv. PV ≤ δV + sν(V ).

v. ν(s(x, π(x))) > 0 for all π ∈ Π0.

Assumption 3 can be viewed as a drift condition (D2) that is satisfied uniformly
on the set of policies. The following theorem establishes the ergodicity of the Pπ
chains.

Theorem 8 ([89]). Suppose that Assumption 3 holds. Then, for π ∈ Π0, x(n) is
a ν-irreducible positive Harris chain with unique invariant measure µπ. Moreover,
J(π, x) = µπ(cπ) and there exists a unique φπ ∈ LV∞ satisfying ν(φπ) = 0 and the
Poisson equation:

µπ(cπ) + φπ = cπ + Pπφπ .

The functions φπ are known as relative value functions and they satisfy

φπ =
∞∑

n=0

[P n
π cπ − µπ(cπ)] + q .

for some constant q.
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Assumption 4. For a fixed x ∈ X, suppose that:

i. B(x) is a compact subset of B.

ii. c(x, ·) is lower semi-continuous on B(x).

iii. The mapping b 7→ Ph is continuous for all bounded measurable h.

iv. The mapping b 7→ PV is continuous.

v. s(x, ·) is continuous on B(x).

The next theorem establishes the existence of stationary AC-optimal policies.

Theorem 9. [89] If Assumptions 3 and 4 hold, then:

1. There exist a constant %∗ ≥ 0, a continuous function φ∗ ∈ LV∞ and a sta-
tionary policy π∗ ∈ Π0 such that the triplet (%∗, φ∗, π∗) satisfies the average
cost optimality equation (ACOE):

%∗ + φ∗(x) = min
b∈B(x)

[
c(x, b) +

∫

X

φ∗(y)P (dy|x, b)
]

(2.9)

= cπ∗(x) + Pπ∗φ
∗(x), ∀x ∈ X ; (2.10)

2. π∗ is AC-optimal and %∗ is the optimal AC-function.

3. The functions φπ in Theorem 8 and φ∗ satisfy

φ∗ = inf
π∈Π0

φπ .

Conversely, standard dynamic programming arguments show that any triplet
(%, φ, π) satisfying the ACOE with φ ∈ LV∞ has π as an AC-optimal policy and %∗

as the optimal AC-function provided that 1/N Eπ∗
x [φ(x(N))] → 0 as N → ∞ [6,

Thm. 5.1].
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Analogously, we can define the average cost optimality inequality (ACOI):

%∗ + φ∗(x) ≥ min
b∈B(x)

[
c(x, b) +

∫

X

φ∗(y)P (dy|x, b)
]

= cπ∗(x) + Pπ∗φ
∗(x), ∀x ∈ X . (2.11)

If the ACOI is satisfied, then we have an upper bound on the cost provided by
the policy π∗:

J(π∗, x) ≤ %∗ .

The proof of Theorem 9 suggests the following value iteration algorithm to
solve the ACOE . Let φN and %N be defined as follows:

φ̄N(x) := min
b∈B(x)

[
c(x, b) +

∫
φN−1(y)P (dy|x, b)

]

=: cπN + PπNφN−1

%N := ν(φ̄N)

φN := φN − %N ,

where φ0 = φ̄0 ≡ 0. The value iteration algorithm is said to converge if

%N → %∗ and φN
LV∞−−→ φ∗ as N →∞ .

Theorem 10. Under Assumptions 3 and 4, the above value iteration algorithm
converges. Moreover, the convergence rate is at least exponential.

Proof. One can use the same arguments as in the proof of Theorem 3.5 of [89]
to show that the mapping φN 7→ φN+1 is a contraction on LV∞, which establishes
exponential convergence of φN by the Banach fixed point theorem (recall that a
fixed point exist by the previous theorem). Since ν is a bounded functional on
LV∞, the cost function %N also converges with exponential rate.

We can also use an alternative value iteration as follows. Let sN (which can
be seen as a N -th stage cost) and πN be defined as follows:

sN(x) := min
b∈B(x)

[
c(x, b) +

∫
sN−1(y)P (dy|x, b)

]
,
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where s0 ≡ 0. Let z ∈ X be an arbitrary but fixed state. Define a sequence of
constants jN and a sequence of functions φN(x) as

jN := sN(z)− sN−1(z) and φ0
N(x) := sN(x)− sN(z) .

Then, this value iteration algorithm is said to converge if

jN → %∗ and φ0
N(x)→ φ∗(x) as N →∞

for some φ∗ and %∗ satisfying the ACOE.

This value iteration algorithm also converges under the conditions of Theorem
10. To see why, note that the convergence of φN implies the convergence of φ0

N

since these two functions only differ by a constant.

Other solution methods involve approximation by linear programs [43] and
policy iteration. More general conditions for the existence of optimal policies and
for the solutions to the ACOE are discussed in [35, Chap. 10].

2.4.1 Multi-objective MDPs

Often in MDPs one seeks to optimize conflicting objectives such as control perfor-
mance and control effort. For a set of nonnegative cost functions {ci}i=1,N , this is
typically done by minimizing the weighted cost cλ =

∑
i λici, where λ = [λi] ≥ 0,

and then the Pareto frontier can be constructed by varying λ. A problem that we
face with this approach in this monograph is that the Pareto frontier may contain
points that are not realized by deterministic policies. In this section we show
how to calculate the missing points on the Pareto frontier from the deterministic
policies. In general, constructing the Pareto frontier with a certain precision by
searching on the weights λ may be computationally expensive. Here we assume
that the frontier is smooth enough so that it can be well approximated with a
small set of weights λ.

Denote by Ji(π) the average ci cost achieved by the policy π. For simplicity,
we assume that Ji does not depend on the initial condition x. The Pareto set P is
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the set of achievable cost combinations, i.e., P = {z ∈ RN
≥0 : z(i) = Ji(π), π ∈ Π}.

If we adopt element-wise inequality as a partial order relation in P , the Pareto
frontier ∂P is defined as the set of minimal (infimal) elements of P .

Proposition 3. Suppose that Assumptions 3 and 4 hold for every cost ci. Then,
an AC-optimal stationary policy π∗ for the cost cλ exists for every weight λ ≥ 0

and satisfies [Ji(π
∗)] ∈ ∂P.

Proof. Let Jλ(π) be the average cλ cost achieved by policy π. Since lim sup is
subadditive, we have that

Jλ(π) ≤
N∑

i=1

λiJi(π), π ∈ Π . (2.12)

This implies that λ defines a supporting hyperplane for P passing through [Ji(π
∗)],

where the existence of AC-optimal policy π∗ for cλ is given by Theorem 9. By
Assumption 3, Theorem 8 and Theorem 4, we have that the limits in the definition
of the average costs Ji exist and, therefore, that (2.12) holds with equality for π∗.
Therefore, since λ ≥ 0, [Ji(π

∗)] ∈ ∂P .

We will show next that ∂P is a convex curve, which implies that we can find all
points in ∂P by solving the cλ-average cost problem and varying λ. One problem
with this procedure is that we cannot find the optimal policies corresponding to
the parts of ∂P that are not strictly convex. Indeed, our weighted cost procedure
may return only one optimal policy, even when the supporting hyperplane defined
by λ intersects ∂P at more than one point. By convexity of ∂P , this intersection
defines a convex set. It is not hard to see that the extreme points of this set can
be realized by stationary policies. Indeed, we can see geometrically that there
exist supporting hyperplanes that intersect ∂P only at these extremes. It turns
out that the points on this convex intersection can be achieved by policies that
randomize among the stationary policies that correspond to the extreme points
of this set.

We say that ∂P is convex if it is the minimal set of its convex hull.
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Proposition 4. Suppose that Assumptions 3 and 4 hold for every cost ci. Then,
the Pareto frontier ∂P is convex. Moreover, every point in ∂P can be achieved by
either a stationary policy or a randomized policy of the form

πb|x = Pr{b(n) = b | x(n) = x} =
N∑

j=0

wj(x)δπj(x)(b) , (2.13)

where πj are stationary policies such that [Ji(πj)] ∈ ∂P and

wj(x) =





αjdµj

d(
∑N
j=0 αjµj)

, for x ∈ supp
∑N

j=0 αjµj

1/N, else
, (2.14)

where αj ≥ 0,
∑N

j=0 αj = 1 and µi are the invariant measures corresponding to
πj.

Proof. By Proposition 3, every supporting hyperplane to the set {z ∈ RN : ∃y ∈
∂P such that z ≥ y} can be defined by a normal λ ≥ 0 and a point [Ji(π

∗)], where
π∗ is a stationary AC-optimal policy for the cost cλ. Let πi beN of these stationary
policies that define supporting hyperplanes. By linearity of P , µx :=

∑N
i=1 αiµi

is the invariant measure when the policy πb|x is executed. The resulting pro-
cess is Markov and ν-irreducible since its probability kernel randomizes between
ν-irreducible kernels. Then, by Assumption 3, Theorem 8 and Theorem 4, we
conclude that

Jj(πb|x) =

∫

K

cj(x, b)µx(dx)πb|x(db) =
N∑

i=0

αiJj(πi)

for j = 1, . . . , N , where the second equality follows from (2.13) and (2.14). This
implies that the the convex hull of the of the average costs achieved by the policies
πi is in P . Noting that the convex hull of a set is the same as the convex hull of
the points in the set that admit a supporting hyperplane, we conclude that ∂P is
a subset of its convex hull and, hence, convex. From this we have that every point
on ∂P admits a supporting hyperplane and, therefore, this point is achieved by
either a stationary policy or a randomized policy of the form πb|x.
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Chapter 3

Jump Control of Probability
Densities

In this chapter, we propose to control the probability density of a process using a
stochastic supervisor that decides when switches should occur and to which mode
to switch. We establish necessary and sufficient conditions under which such a
controller may exist and, when these conditions hold, we provide a controller that
guarantees the ergodicity of the desired invariant density. In addition, we provide
general results that have wide application in the study of ergodicity in PDPs,
beyond the specific control design problem addressed here.

3.1 Problem Description

In this chapter we consider the PDPmodel of Section 2.3. In our setting, the vector
field f : X×M→ X is given and m(t) should be viewed as a control variable. The
controller cannot measure the state x directly; instead, an observation variable
z(t) = q(x(t)) is given. In general, the function q(x) is not known to the controller,
which has access to z(t) only.

Assuming that q(x) is nonnegative and
∫
X
q(x) `(dx) <∞, our objective is to

design λ and Q such that a randomized controller will select m(t) as a function
of the observations {z(τ); 0 ≤ τ ≤ t} collected up to time t so that the marginal
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probability density
∫
M p(x,m, t) ν(dm) converges to cq(x), where c is a normal-

izing constant chosen so that cq(x) integrates to one. We shall see later that
the knowledge of the normalizing constant c is not necessary to implement the
proposed control law.

Although jumps in the state x are allowed in a general PDP, we restrict Q so
that jumps in only m are allowed. Further, we restrict Q(ξ, ·) to be absolutely
continuous with respect to δx× ν. For this jump kernel, it is convenient to define
the jump pdf Tx as

Q((x,m), {x} ×B) =

∫

B

Tx(m
′,m) ν(dm′), (x,m) ∈ X×M, B ∈ B(M) ,

where Tx(·,m) is a probability density function with respect to the reference mea-
sure ν.

In practice, q(x) may be itself a function of some real measurements F (x).
For example, we can select q(x) = Z(F (x)), where the function Z(·) is a design
parameter used to guarantee that Z(F ) is nonnegative and integrable. The func-
tion Z(·) may also be used to accentuate the maxima of F . For example, if the
physical measurement corresponds to F (x) = 1 − ‖x‖2, a reasonable choice for
Z(·) that leads to a nonnegative integrable function is

Z(F ) =

{
F , if F > δ

δeF−δ , if F ≤ δ,
(3.1)

for some δ > 0. Alternatively, if one is mainly interested in achieving a high
density close to the maxima of F (x), a possible choice for Z(·) is given by

Z(F ) = F n ,

for some n > 1, provided that F n is already nonnegative and integrable [if not, one
could also use Z to achieve this, as it was done in (3.1) above]. The well-known
optimization method of simulated annealing arises from a similar objective when
n is increased to infinity along consecutive iterations [88].
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3.2 Controller Existence and Design

In this section we provide a family of control laws that achieve the first part of
our objective: to make a given probability density a stationary density for the
PDP. The second part, which is the convergence to the desired density, is covered
in the next section.

Our main design tool is the Fokker-Planck-Kolmogorov equation (2.8), which
is used to determine a jump rate λ and a jump pdf Tx such that the joint invariant
density of the process [which is obtained by setting ∂p/∂t = 0 in (2.8)] corresponds
to an invariant marginal distribution

∫
M p(x,m, t) ν(dm) that is proportional to

q(x). In fact, it will even be possible to obtain a joint invariant distribution
p(x,m, t) that is independent of m. For simplicity of presentation, in the sequel
we assume that q(x) has been scaled so that it is itself a probability density:∫
q(x) `(dx) = 1. However, none of our results require this particular scaling.

We start with an analysis that gives necessary and sufficient conditions on the
vector field f for the existence of a jump control strategy that achieves the steady-
state solution p(x,m, t) = h(x,m), ∀(x,m) ∈ X ×M and t > 0, for a probability
density h(x,m) that integrates to 1:

∫
X×M h(x,m) `(dx)ν(dm) = 1. We denote

by L1(X×M) the space of real functions integrable with respect to `× ν. We say
that h is an admissible invariant density if there exists a jump rate λ and a jump
pdf Tx such that h is an invariant density for the PDP.

Theorem 11. Given a continuously differentiable probability density h(x,m) > 0,
∀(x,m) ∈ X×M, with ∇x · fh ∈ L1(X×M), a necessary and sufficient condition
for h to be an admissible invariant density for the PDP (x(t),m(t)) is given by

∫

M
∇x · fh(x,m) ν(dm) = 0, ∀x ∈ X . (3.2)

Moreover, when this condition is satisfied, the PDP has the desired invariant den-
sity h for the uniform jump pdf Tx(·, ·) ≡ 1, and the jump rate

λ(x,m) =
α(x)−∇x · fh(x,m)

h(x,m)
, (3.3)
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where α(x) can be any function for which λh is nonnegative and integrable.

Proof. To prove necessity, assume that h is an invariant density and substitute
p(x,m, t) = h(x,m) in (2.8):

∇x · fh = −λh+

∫

M
Tx(m,m

′)λ(x,m′)h(x,m′)ν(dm′) . (3.4)

Recall that, since Tx(·,m′) is a pdf,
∫
M Tx(m,m

′)ν(dm) = 1. Using this fact,
condition (3.2) is obtained by integrating both sides of (3.4) on m and changing
the order of integration on the right-hand side.

To prove sufficiency, we select Tx(·, ·) ≡ 1 and

λh = α(x)−∇x · fh (3.5)

as in (3.3). For this jump rate to be consistent, we need to have λ ≥ 0, which
is possible if one takes α(x) ≥ maxm∈M |∇x · fh|. Note that this quantity is
bounded since M is compact and fh is continuously differentiable. In addition,
since ∇x · fh ∈ L1(X ×M) and M is compact, this choice of α guarantees that
λh ∈ L1(X×M). Finally, provided that λh is integrable, we can replace (3.5) and
Tx in (3.4) to conclude from Theorem 7 that h is indeed an invariant density for
our choice of the pair (λ,Tx).

Remark 1. It may happen that the λ given by (3.3) is not uniformly bounded,
which might be an issue in proving stability of the invariant density. A sufficient
condition (which is also a necessary condition under appropriate hypotheses) to
have λ(x, v) < 2M , ∀(x, v), for some finite constantM , is |∇x ·fh| ≤Mh, ∀(x, v).

Remark 2. The control law in Theorem 11 admits a straightforward general-
ization: one can verify that the conclusions also hold when the jump pdf sat-
isfies Tx > 0,

∫
M Tx(m,m

′)ν(dm′) = 1,
∫
M Tx(m,m

′)f(x,m′)ν(dm′) = 0 and∫
M Tx(m,m

′)∇x · f(x,m′)ν(dm′) = 0.

Condition (3.2) may be quite restrictive on the vector field f . Since q is not
known in advance, we need (3.2) to hold independently of q. If, however, we
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allow h(x,m) to be arbitrary, the only vector field f that satisfies (3.2) for all
possible densities h(x,m) is f ≡ 0. A less restrictive condition is obtained when
the desired density can be factored as h(x,m) = β(m)q(x), ∀(x,m), for some
density β. In this case, the compactness of M and the continuity of f and of
∇xf allow us to interchange integration and differentiation in (3.2) to obtain the
following corollary.

Corollary 2. Consider continuously differentiable probability densities h that can
be factored as h(x,m) = β(m)q(x) > 0,∀(x,m) ∈ X×M, where β > 0 and q > 0

satisfy β∇x · fq ∈ L1(X ×M). Then, a necessary and sufficient condition for all
h of this form to be admissible invariant densities is given by

∫

M
f(x,m) β(m)ν(dm) = 0, x ∈ X . (3.6)

Remark 3. The existence condition (3.6) may be restrictive for some dynamical
systems since it requires the ability to “reverse” the vector field. This is a problem
for systems with relative degree larger than zero. For example, consider the case in
which X = R2, M = [−1, 1], ν is a uniform probability measure and f(x1, x2,m) =

[x2 m]T . This PDP does not satisfy the existence condition (3.2) with h(x,m) =

β(m)q(x), ∀(x,m). In this case, one would be interested in achieving some m-
dependent invariant density h(x,m) such that

∫
M h(x,m)ν(dm) = q(x). However,

it is not clear whether that can be done using output feedback.

3.2.1 Output Feedback Controller

We consider now the amount of information that is needed to implement the
control law proposed in Theorem 11. Corollary 2 is especially useful because
the condition in (3.6) does not depend on the function q, which is not known in
advance. We will therefore choose h(x,m) = β(m)q(x). Without loss of generality,
we set β ≡ 1, which is equivalent to redefining the reference measure to ν̄(dm) =

β(m)ν(dm).
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The uniform jump pdf Tx(·, ·) ≡ 1 is trivial to implement since it does not
depend on x and the controller has the freedom to select m. Now, consider the
jump rate given by (3.3), which we can rewrite as

λ = η − f · ∇x ln q −∇x · f , (3.7)

where η(x) := α(x)/q(x). To compute λ(x,m), the controller needs to evaluate
three terms:

• To evaluate the term f · ∇x ln q, we observe that

f · ∇x ln q(x(t)) =
d ln q

dt+
(x(t)) , (3.8)

where ‘+’ denotes the derivative from the right. Therefore, the controller
only needs to have access to the time derivative of the observed output
z(t) = q(x(t)) in order to evaluate this term.

• To evaluate the term ∇x · f , the controller must know the vector field f and
the current state x of the process. However, when ∇x · f is independent of
x, state feedback is not necessary to evaluate this term.

• Regarding the term η(x) = α(x)/q(x), we have the freedom to select α(x)

under the constraint that we keep λ nonnegative and bounded, which can
be achieved if we keep η ≥ |f · ∇x ln q +∇x · f | = |q−1∇x · fq|.

In particular, when there exists some function φ : M → R such that ∇x ·
f(x,m) = φ(q,m),∀(x,m), and a functionM that satisfiesM(q) ≥ maxm∈M |q−1∇x·
fq|, we can use the following output feedback realization of the jump rate:

λ(x,m) = M(z)− d ln z

dt+
− φ(m) . (3.9)

3.2.2 Implementation Details

Assume, for simplicity, that M is constant and that ∇x · f = 0. According to
(2.6), the probability of the process maintaining the same mode in the interval

41



Chapter 3. Jump Control of Probability Densities

[0, t] is given by

exp

(
−
∫ t

0

λ(x(τ),m(τ))dτ

)
= exp

(
−
∫ t

0

M − d

dτ
(ln q(x(τ)))dτ

)
= e−Mt q(x(t))

q(x(0))
.

(3.10)

This provides a simple and useful expression for the practical implementation of
the control: Suppose that a jump happens at time T k. At that time pick a random
variable r uniformly distributed in the interval [0, 1] and jump when the following
condition holds

z(t) ≤ r eM(t−T k) z(T k), t ≥ T k . (3.11)

As opposed to what (3.9) seems to imply, one does not need to take derivatives
to implement the jump rate. Also, the control law is not changed if a constant
scaling factor is applied to q(x), which is important because we cannot apply a
normalizing constant to the unknown function q.

Often physical quantities propagate with spatial decay not faster than expo-
nential, which allows for the uniform boundedness of ‖∇x ln q‖ and the existence
of a constant M . If, however, the measured quantity has a faster decay rate, it
may still be possible to achieve boundedness of ‖∇x ln q‖ by preprocessing the
measurements (as explained in Section 3.1) as long as a finite bound for their
decay rate is known.

In addition, the constant M may be identified on the run. This can be done,
for example, with the following update rule:

M(t) =

{
|d(ln z)/dt+|+ ε, if M−(t) ≤ |d(ln z)/dt+|+ ε/2

M−(t), else
(3.12)

for t > 0, M(0) = 0 and some ε > 0. A more elaborate adaptation is obtained
by allowing M to depend on q. This would have the advantage of reducing the
number of unnecessary jumps in some parts of the space.
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3.3 Ergodicity of the Controlled Process

In this section we investigate whether the above control strategy makes the prob-
ability density of the PDP converge to q as time goes to infinity. We summarize
the results in this section with Theorem 12, which gives necessary and sufficient
conditions for convergence.

Let Br(x) denote the open ball with radius r centered at x ∈ X. We say that
the system ẋ = f(x, u), u ∈M, is approximately controllable if, for every x0, x1 ∈ X

and ε1 > 0, there exists a time t1 > 0 and a measurable control u(t) ∈ M that
steers the state from x(0) = x0 to x(t1) ∈ Bε1(x1).

Theorem 12. Suppose that q > 0 is a continuously differentiable density for
which there exists a continuous and bounded function M and ε > 0 satisfying
|∇x · fq|/q + ε ≤ M(q). Consider the PDP (x(t),m(t)) with the output feedback
control:

Tx(·, ·) ≡ 1, λ(x,m) = M(z)− d ln z

dt+
− φ(m) . (3.13)

Then, p(x,m, t)→ q(x) in total variation as t→∞ for all initial densities if and
only if the vector field satisfies

i.
∫
f(x,m) ν(dm) = 0, ∀x ∈ X;

ii. the system ẋ = f(x, u), u ∈M, is approximately controllable.

Moreover, when the above convergence holds, the PDP is an aperiodic Harris
recurrent process and the following convergence of empirical averages holds: for
every τ > 0 and every ψ such that ψg ∈ L1(X×M),

n−1

n−1∑

k=0

ψ(x(τk),m(τk))→
∫

X×M
ψ(x,m)q(x) `(dx)ν(dm) a.s. (3.14)

for all initial conditions.

The proof of this theorem will appear later in the chapter. Before that we
discuss the assumptions and conclusions of the theorem.
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Remark 4. We say that a set F ⊂ X is a positive basis if 0 is in the (algebraic or
topological) interior of the convex hull of F. A typical case in which condition (ii)
is satisfied is when {f(x,m);m ∈M} contains a positive basis for X for all x ∈ X

(see the Filippov-Wazewski argument in Proposition 6). We can always define a
reference measure ν to satisfy condition (i) as long as the positive basis behaves
uniformly with x.

Next, we show that convergence is preserved ifM is identified on the run using
(3.12).

Theorem 13. Suppose that supX×M |∇x · fq|/q <∞ and that ∇x · f = 0. Then,
the conclusions in Theorem 12 hold when the jump rate is replaced by

λ(x,m) = M(t)− d ln z

dt+
, (3.15)

where M(t) is identified on the run using (3.12).

Proof. Let M̄ = supX×M |∇x · fq|/q. From (3.12), M(t) increases by at least ε/2
at every update. Thus, M(t) must achieve a limit M0 ≤ M̄ + ε in finite time.
Suppose M0 ≤ M̄ and let C0 = {(x,m) ∈ X ×M : |f · ∇x ln q| + ε/2 < M0}.
This definition implies that (x(t),m(t)) ∈ C0 for all time. Let q0 be a probability
density such that q0 = q on C0 and |f · ∇x ln q0|+ ε/2 < M0. Since λ ≥ 0 on C0,
we can apply Theorem 12 to conclude that p(x, v, t) converges to q0. But, since
M0 ≤ M̄ ,∫

Cc0

q(x)`(dx)ν(dm) ≥
∫

{|f ·∇x ln q|+ε/2>M̄}
q(x)`(dx)ν(dm) > 0 , (3.16)

where the last inequality follows from the continuity of f ·∇x ln g. This contradicts
the convergence of p(x, v, t) to q0(x) since

∫
C0
q0(x)`(dx)ν(dm) < 1. Therefore,

M(t) achieves a limit M0 > M̄ in finite time and Theorem 12 can be applied to
conclude convergence after the limit is reached.

3.3.1 Ergodicity for the PDP

In this section we derive some new results regarding the ergodicity of invariant
measures of PDPs. While some ergodicity results specific for PDPs may be found
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in the literature (see e.g. [23]), those rely mostly on Foster-Lyapunov criteria
and do not appear to be suited our purposes, since we try to prove ergodicity for
general vector fields f . On the other hand, our task of proving ergodicity is made
somewhat easier since we know, by design, that an invariant measure exists.

Let us call jump Markov chain a new PDP obtained from the original one
by replacing the vector field f by f(x,m) = 0, ∀(x,m). We say that the jump
Markov chain is mode-irreducible if, for each initial (x,m) ∈ X ×M and any set
B with ν(B) >0, there is a positive probability that {x} × B will be eventually
reached from (x,m).

Assumption 5. i. the jump Markov chain is mode-irreducible.

ii. λ(x,m) is a bounded continuous function on X×M and, for any bounded and
continuous ψ, the map

(x,m) 7→
∫

M
Tx(m

′,m)ψ(x,m′) ν(dm′) (3.17)

is continuous.

iii.
∫
f(x,m) ν(dm) = 0;

iv. the system ẋ = f(x, u), u ∈M, is approximately controllable.

Proposition 5. Suppose that Assumption 5 (i)-(ii) holds. Let m̄ : R+ →M be a
piecewise constant function with finitely many jumps and let x̄(t) be the solution
to ˙̄x(t) = f(x̄(t), m̄(t)) with initial condition x̄0. Then, given the initial condition
(x̄0, m̄(0)) and any ε1, t1 > 0, the PDP (x(t),m(t)) visits the ball of radius ε1
centered at (x̄(t1), m̄(t1)) with positive probability at time t = t1, i.e.,

P t1
(
(x̄(0), m̄(0)), Bε1(x̄(t1), m̄(t1))

)
> 0, ∀t1, ε1 > 0. (3.18)
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Proof. By Assumption 5 (i), given a time t1 > 0 and ε0 > 0, there exists m(t)

satisfying m(t) ∈ suppTx̄(t)(·,m−(t)) and m(t) = m̄(t) on [0, t1]\S, where S has
Lebesgue measure ε0. Thus, if ẋ(t) = f(x(t),m(t)) and x(0) = x̄0, the assumption
of continuity of ∇xf and of no finite scape time implies that ‖x(t1)− x̄(t1)‖ < κε0

for some constant κ > 0. On the other hand, the smoothness of f and the
irreducibility and continuity assumptions in Assumption 5 (i)-(ii) imply that
(x(t1),m(t1)) is found in any neighborhood of (x(t1),m(t1)) with positive proba-
bility. Combining the two facts, we have the result in the proposition.

Let co(A) denote the closure of the convex hull of the set A.

Proposition 6. Suppose that Assumption 5 (i)-(ii) holds and let x̂(t) be a solution
to the differential inclusion ˙̂x ∈ co {f(x̂,m),m ∈M} with initial condition x0.
Then, given ε1, t1 > 0 and m0,m1 ∈M, the PDP (x(t),m(t)) with initial condition
(x0,m0) visits the ball of radius ε1 centered at (x̂(t1),m1) with positive probability
at time t = t1, i.e.,

P t
(
(x0,m0), Bε1(x̂(t),m1)

)
> 0, ∀t, ε1 > 0 (3.19)

and for all m0,m1 ∈ M. As a consequence, under Assumption (i)-(ii), approxi-
mate controllability is equivalent to `× ν-irreducibility.

Proof. Let xu(t) denote the solution to ẋu(t) = f(xu(t), u(t)) for the initial condi-
tion x0 and some control u(t). By the continuity of ∇xf and the assumption of no
finite scape time (Assumption 2), we can apply the Filippov-Wazewski theorem
[8, Thm 10.4.3] to conclude that, given t1, ε0 > 0, there exists a measurable control
u(t) ∈M such that ‖xu(t1)− x̂(t1)‖ < ε0. Under Assumption 2 (i), we can apply
Theorems 2.20 and 2.24 of [40] to conclude that there exists a piecewise-constant
control m(t) ∈ M with finitely many jumps that approximates the measurable
control u(t) in the sense that ‖xu(t1) − xm(t1)‖ < ε0. Thus, by Proposition 5,
we conclude that P t1((x0,m(0)), Bε1(x̂(t1),m(t1))) > 0 for any ε1 > 0. As in the
proof of Proposition 5, this holds for arbitrary initial and final modes m(0) and
m(t1) since the PDP is jump-irreducible and m may take arbitrarily small time
on those states.
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Proposition 7. Under Assumption 5 (i)-(iv), the PDP (x(t),m(t)) is an aperi-
odic `× ν-irreducible T-process.

Proof. By Proposition 6, ` × ν-irreducibility is equivalent to the controllability
condition (iii). From condition (iv), we have that 0 ∈ co{f(x,m);m ∈ M} and
Proposition 6 implies that P t((x0,m0), Bε0(x0,m0)) > 0 for all t > 0 and ε0 > 0.
This implies aperiodicity of the `×ν-irreducible process since trajectories starting
on any open set return to the set at any time with positive probability. By [25,
Thm. 27.6], Assumption 5 (ii) implies that the PDP has the (weak) Feller property
as defined in Chapter 2. Given the Feller property, the `×ν-irreducibility and the
fact that supp(`× ν) = X×M has non-empty interior, we can use Proposition 1
to conclude that the PDP is a T -process.

Proposition 8. Suppose that Assumption 5 (i)-(iv) holds and that the PDP
(x(t),m(t)) admits an invariant probability density h(x,m) > 0. Then, the PDP
is an aperiodic positive Harris recurrent process.

Proof. Let µ denote the invariant measure corresponding to h. By Proposition 7,
the PDP is an aperiodic `× ν-irreducible T-process. Therefore, the space X×M
admits a decomposition into a maximal Harris set H with invariant measure µ and
a transient set E as in Theorem 3. Since µ(H) = 1 and h(x,m) > 0, we must have
` × ν(E) = 0. However, E is an open set by Lemma 1. This implies that E = ∅
and therefore the PDP is an aperiodic positive Harris recurrent process.

Proof of Theorem 12. (Necessity) The necessity of condition (i) follows from Corol-
lary 2. To see the necessity of condition (ii), note that the convergence of
p(x,m, t) to q(x) implies that the process is µ-irreducible, where µ(dx, dm) =

q(x)`(dx)ν(dm), which implies the controllability condition since q > 0.

(Sufficiency) It follows from Theorem 11 and Corollary 2 that q is an invariant
density for the pair (λ, Tx) presented. To prove convergence, we apply Proposition
8. The inequality |∇x · fq|/q + ε < M implies that λ = M − ∇x · fq/q ≥ ε and
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that λ is uniformly bounded. Therefore, Assumption 5 (i) holds since λ ≥ ε and
a uniform jump distribution imply mode-irreducibility. Since fq is continuously
differentiable in x, we have that λ is continuous and, therefore, Assumption 5 (ii)
holds. Assumption 5 (iii)-(iv) follows from conditions (i) and (ii). Therefore,
we have that the process is aperiodic positive Harris recurrent, which implies W -
ergodicity and convergence in total variation by Theorem 4. Clearly, the same
convergence result as in (2.4) must hold for the kernel P kτ . This implies that
(x(kτ),m(kτ)) is positive Harris for all τ > 0. Then, the convergence of the
empirical averages for all initial conditions follows from Theorem 2.

3.4 Jump Control versus Diffusion Control

In the same way we can control probability densities with random jumps in the
vector field, we can control probability densities using controls which undergo
Brownian motion. Consider the process

dx(t) = f(x,θ)dt (3.20)

dθi(t) = σi(x,θ)dwi, i = 1, . . . , nθ (3.21)

where [θi] is a vector, wi(t) is the standard 1-dimensional Wiener process and σi
are nonnegative functions of x and θ.

As before, we want to design σ in order to induce a stationary distribution for
x(t). We can write the standard Fokker-Planck equation for this process as

∂p

∂t
+∇x · fp =

1

2

nθ∑

i=1

∂2σ2
i p

∂θ2
i

For simplicity, let nθ = 1 and ∇ · f = 0. If we replace p(x, θ, t) = q(x) and solve
for σ2

i , we obtain

σ2(x, θ) = η + 2

∫ ∫
f(x, θ) dθdθ · ∇ ln q

where η is some function independent of θ and the integrals are indefinite. With
our output measurement model, only f · ∇ ln q can be observed. This means that
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the double integral must be an affine function of f in order that we can implement
σ2 with output feedback. This is only possible if the components fj of the vector
field are of the form

fj = gj(x) cos(ωθ + φj), j = 1, . . . , d , (3.22)

where ω and φj are constants and gj is some function of the state.

This imposes an important restriction on the structure of diffusion-based con-
trollers as compared to jump-based controllers. Conceivably, more general vector
fields f could be considered if one added a drift term to (3.21) or if one considered
nθ > 1. However, it is still an open problem whether the resulting control can be
implemented with output feedback.

For vector fields of the form (3.24), we obtain an expression for the variance
analogous to the expression for λ in the previous sections:

σ2 = η − 2ω−2f · ∇x ln q . (3.23)

As before, η must be such that σ2 is nonnegative.

This result can be readily extended to the case nθ > 1 if f is of the form

fj = gj(x)

nθ∏

i=1

cos(ωiθi + φji), j = 1, . . . , d , (3.24)

where ωi and φij are constants and gj is a function of the state x. The corre-
sponding variance is

σ2
i = ηi − 2κif · ∇x ln q , (3.25)

where κi are any nonnegative weights satisfying
∑nθ

i=1 κiω
2
i = 1.

To prove convergence, define the Kullback-Leibler divergence between two so-
lutions p1 and p2 of the Fokker-Planck equation by

H(t) =

∫

Rd×Rnθ
ln

p1(x, θ, t)

p1(x, θ, t)/2 + p2(x, θ, t)/2
p1(x, θ, t)dxdθ . (3.26)
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We can use the Fokker-Planck equation as in [76, Eq. 6.18] to compute the time
derivative of H:

Ḣ(t) = −
∫

Rd×Rnθ

(
∂ lnR

∂θ

)2

p1σ
2dxdθ , (3.27)

where R = p1(x, θ, t)/(p1(x, θ, t)/2 + p2(x, θ, t)/2). Therefore, if p1 and p2 are two
invariant probability densities, R must be independent of θ σ2p1-a.e. Suppose that
σ2 > 0 for all (x, θ) and that also the stationary density is such that q(x) > 0.
Then, if p is another invariant density, it must be independent of θ. If we divide
the respective Fokker-Planck equations by p and q then subtract the equations,
we obtain that the two invariant densities must satisfy

f · ∇x ln
p

q
= 0, ∀(x, θ) . (3.28)

If span{f(x, θ); θ ∈ Rnθ} = Rd for all x, (3.28) implies that p ≡ q. With this we
conclude that the invariant density is unique and therefore ergodic. This allows us
to apply the continuous analog of Theorem 1 to conclude convergence of empirical
averages.

In summary, the empirical density of x(t) converges weakly to q(x) provided
that span{f(x, θ); θ ∈ Rnθ} = Rd and σ2 > 0 for all x.

As we have seen, this diffusion control strategy shares many similarities with
our jump control. Its main drawback is that it requires a special topology on the
space of controls θ so that they can diffuse. A consequence of that is the restrictive
form required for f in (3.24).

3.5 Comments and Open Problems

We have presented a Markov Chain Monte Carlo approach for dynamical systems.
As discussed in Remark 3, the main limitation of our solution is given by the
necessary condition (3.6), which prevents it to work with systems whose relative
degree is higher than or equal to one. At the same time, we have seen that (3.6)
implies the aperiodicity of the underlying process. This suggests that possible
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solutions for the case of systems with higher relative degrees may have to be
periodic.

One major challenge in further understanding the jump control problem is in
the difficulty of treating partial integro-differential equations analytically. Ana-
lytical solutions can no longer be found if we consider slight modifications of the
proposed model such as introducing disturbances. A possible way to deal with this
problem is to use perturbation methods for semigroups or their resolvents. To this
purpose, knowing Lyapunov functions for the unperturbed process is fundamental.

In the spirit of Markov Chain Monte Carlo, it would be valuable to explore
the use of simulated annealing, for application in optimization problems, and the
use of optimal stopping rules that decide when enough information about q has
been collected.

It is also possible to envision the use of this technique in a parallel computing
implementation of Markov Chain Monte Carlo. Suppose that q(x) is some function
hard to compute, but whose computation can be parallelized. For example, if
q(x) = Eθ qθ(x) and computing qθ is computationally expensive, the computation
can be parallelized by having different nodes of a computer cluster to compute
samples qθi and then communicate the result to a central node that computes
q(x) ≈∑i qθi(x). The benefit of using jump control is in that, assuming that the
nodes random number generators are synchronized, the vector x does not need
to be transmitted to the nodes but only the decision of whether to jump or not,
which represents time savings in the case x is very large. However, the same
effect could be achieved using the Metropolis-Hastings algorithm, which can also
be implemented without explicitly transmitting x. Hence, it is not clear if there
is a particular advantage in using jump control.
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Applications of Jump Control to
Mobile Robotics

This chapter addresses the application of jump control of probability densities
in the area of mobile robotics. In this type of application, the state x typically
includes the position of a mobile robot that can take point measurements z =

q(x) at its current location. We discuss three main applications: monitoring,
deployment and search.

The control algorithms proposed here are motivated by the chemotactical mo-
tion of the bacterium E. coli. Due to its reduced size, the E. coli is unable to
perceive chemical spatial gradients by comparing measurements taken by different
receptors on the cell surface. Nevertheless, this organism is still able to follow the
gradient of a chemical attractant, despite the rotational diffusion that constantly
changes the bacterium orientation. This is accomplished by switching between
two alternate behaviors known as run and tumble [14, 2]. In the run phase, the
bacterium swims with constant velocity by rotating its flagella in the counter-
clockwise direction. In the tumble phase, by rotating its flagella in the clockwise
direction, the bacterium spins around without changing its position and in such a
way that it enters the next run phase with arbitrary orientation. Berg and Brown
[14] observed that the only parameter that is affected by the concentration of a
chemical attractant is the duration of runs. Roughly speaking, the less improve-
ment the bacterium senses in the concentration of the attractant during the run
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phase, the more probable a direction change (tumble) becomes. Such a motion
leads to a distribution whose peak usually coincides with the maximum of the
sensed quantity.

The parallel between E. coli ’s chemotaxis and some search problems involving
autonomous vehicles is quite remarkable: In mobile robotics, gradient information
is often not directly available, either because of noisy and turbulent environments
or because the vehicle size is too small to provide accurate gradient measurements,
challenges also faced by the E. coli. This bacterium also does not have access to
global or local position information, which is analogous to the lack of position
measurements that arise in applications for which inertial navigation systems are
expensive, GPS is not available or not sufficiently accurate (as in underwater
navigation or cave exploration), or the vehicles are too small or weight constrained
to carry this type of equipment. These observations inspired us to formulate the
problem of jump control of probability densities and apply it to the field of mobile
robotics.

While mimicking chemotaxis is not a new solution to optimization problems,
see e.g. [45, 91, 71, 28, 59], our control strategy is distinct in that we are able to
provide formal statements about the stationary density and the convergence to
it.

4.1 Applications in Mobile Robotics

4.1.1 Monitoring Applications

In monitoring applications, one attempts to estimate a spatially-defined function
q using mobile robots. Potential applications for this work thus include chemical
plant safety, hydrothermal vent prospecting, pollution and environmental moni-
toring, fire or radiation monitoring, etc.

Traditional solutions to this problem involve sweeping a grid on the space.
In our solution, we use jump control of probability densities to make the spatial
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distribution of a group of robots coincide with q. Then, we have an external
observer to estimate q by keeping track of the positions of robots. It is also
possible to have agents transmit their measurements to said observer.

It is well known in the MCMC literature that a random walk that samples
the space according to a probability density q is more efficient to describe q than
a uniform grid since points are sampled with a probability that is proportional
to their importance to the function being described. Another advantage of our
solution with respect to grid methods is that it does not require a complicated
planning, which would involve agent coordination, high memory requirements and
position sensors.

The convergence of empirical averages provides the basis for a procedure to
estimate q(x) by observing the positions xn of N identical vehicles performing
the above jump control strategy. We start by partitioning the region of interest
into a family of sets {Ai ⊂ X}, then we sample the vehicles’ positions at times
kτ ∈ {0, τ, 2τ, . . . , (M−1)τ}, for some τ > 0, and count the frequency with which
vehicles are observed in each set Ai. It turns out that this frequency provides an
asymptotically correct estimate of the average value of q(x) on the set Ai. To see
why this is the case, we define

GN,M(Ai) =
1

NM

N−1∑

n=0

M−1∑

k=0

1Ai(xn(kτ)) . (4.1)

Assuming that the vehicles have mutually independent motion, we can use ergod-
icity as in Theorem 12 to conclude that

GN,M(Ai)→ G(Ai) :=

∫

Ai

q(x) `(dx) a.s. (4.2)

as M →∞. This shows that q(x) can be estimated by averaging the observations
of the vehicles’ position as in (4.1). The use of multiple independent agents
(N > 1) improves the estimates according to the relation

var(GN,M) =
var(G1,M)

N
. (4.3)
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4.1.2 Deployment Applications

In deployment applications, a group of robots is required to distribute themselves
in an environment based on the values of the measured function q. These mea-
surements may be, for example, the concentration of a chemical agent and one
wants the robots to distribute themselves so that more robots will be located in
areas of higher concentration of the chemical agent. Alternatively, q may be some
radio signal used to control the spatial density of agents.

Most deployment strategies in the literature require agents to converge to
some static equilibrium [18]. This type of deployment offers the benefit of min-
imizing some coverage metric. However, it demands from agents the ability to
communicate and measure their positions. Another possible disadvantage of a
static deployment is that it may prevent agents from exploring other regions of
the space.

We describe next in which sense our deployment strategy is optimal. We can
translate the objective of making p(x,m, t) converge in total variation to q as the
maximization of a relevant reward function. From [58], this convergence implies
that

H(t) =

∫

X

∫

M
p(x,m, t) ln

(
1

2
+

1

2

q(x)

p(x,m, t)

)
`(dx)ν(dm)→ 0 ,

where H(t) is the Kullback-Leibler divergence between p(x,m, t) and the convex
combination 1/2 q(x) + 1/2 p(x,m, t). Since H(t) ≤ 0 with equality to zero if
and only if q(x) = p(x,m, t) a.e., one can regard H(t) as a cost functional that
is being maximized by our control. More specifically, what is being maximized is
the expected value of an increasing concave function of q/p:

H = Ep

[
ln

(
1

2
+

1

2

q

p

)]
. (4.4)

In a multi-agent scenario in which the number of agents is large enough so that the
probability density p(x,m, t) approximates the density of agents at point (x,m, t),
we can interpret this as a maximization of the average intensity of the field q per
vehicle.
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Moreover, it is a well-known fact that H increases monotonically with time [57,
Thm. 9.2.2], which means that agents steadily improve their deployment metric
H.

4.1.3 Search Applications

In search applications, a group of robots is asked to find the point at which the
measurement has a global maximum (or minimum), in which case one wants
the probability density function of x to have a sharp maximum at the point x
where q(x) is maximum (or minimum). These applications are often referred to
as “source-seeking” motivated by scenarios in which the robots attempt to find
the source of a chemical plume, where the concentration of the chemical exhibits
a global maximum.

This objective is achieved by a method closely related to simulated annealing
[88]. If F (x) denotes the spatial field whose maximum we search for, we set q to

q(x) = Z(F (x)), Z(F ) = F n ,

for some n > 1. For high values of n, we have that the vehicles spend most of the
time on a neighborhood of the maximum of F . As we will see later, a drawback
of using n too large is that convergence to the stationary density may be slow. In
practice, a large n makes the search too sensitive to measurement noise.

On the other hand, a benefit of not using very large n is that vehicles may
also find local maxima of the function F , which is beneficial in the source-seeking
context since these maxima are often caused by secondary sources of the measured
physical quantity.

In simulated annealing, the exponent n is gradually increased as time pro-
gresses so that x actually converges to the maximum of F .

We adopt the suggestive name of optimotaxis to designate this search proce-
dure. An important feature of optimotaxis is that it can be used with a broad class
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of signal profiles, including the ones with multiple maxima, a feature that is shared
with a few other stochastic optimization algorithms which are not constrained by
vehicle kinematics [3, 26].

4.2 Examples

In this section we present applications of our main result to three systems char-
acterized by different dynamics. The first dynamics are heavily inspired by the
tumble and run motion of E. coli and correspond to a vehicle that either moves
in a straight line or rotates in place. The second is a Reeds-Shepp car [84], which
has turning constraints, but can reverse its direction of motion instantaneously.
The third dynamics corresponds to a vehicle that is controlled through attrac-
tion/repulsion by one of three beacons in the plane.

4.2.1 Optimotaxis

We have introduced the term Optimotaxis in [66] to designate our jump control
strategy for a dynamics that resemble that of the tumble and run motion of the
E. coli. We consider vehicles moving with position x ∈ X = Rd and velocity v,
where v belongs to the unit sphere M = Sd. The measure ν is the normalized
surface measure on the sphere. In this case, the mode is represented by v and we
have f(x, v) = v. Our objective is to make the probability density of the vehicles
position converge to the observed function q(x) and then have an external observer
that can measure the vehicles position to collect information about q(x).

It is straightforward to show that the existence condition (3.6) holds and that
{f(x, v); v ∈ M} is a positive basis for all x (see Remark 4). Therefore, we can
apply Theorem 12 and to obtain

Tx ≡ 1 and λ(x, v) = η − v · ∇x ln q, , (4.5)

where η > ‖∇x ln q‖.
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Next, we present numerical experiments to illustrate the proposed optimization
procedure. The desired stationary density is taken to be q(x) = cF n(x), where F
are the physical measurements, c is a normalizing constant and n is an integer.

The main capability of optimotaxis, the localization of the global maximum, is
stressed in Fig. 4.1. We observe a swarm of agents that starts from the upper left
corner (I), initially clusters around a local maximum (II) and then progressively
migrates to the global maximum (III,IV). We notice that the center of mass of
the swarm goes straight through the local maximum to the global one. When the
equilibrium is reached, most agents concentrate in a neighborhood of the global
maximum. Yet, a portion of the agents clearly indicates the existence of the local
maximum. This means that the information on secondary sources (local maxima)
is not lost. 21

Fig. 2. Different stages of optimotaxis in the presence of two maxima. Black dots represent agents position whereas the

background intensity represents the signal intensity. F (x) = 0.4e−‖x‖ + 0.6e−‖x−[1.5 −1.5]′‖, g(x) = F n(x) with n = 10,

ρ(x) ≡ 1.

version of the desired density g(x) to calculate the coefficient. Interestingly, the addition of noise

does not seem to affect considerably the transient response. Nevertheless, the residual error is

greater due to the fact that the stationary density is not the one expected. On the other hand,

quantization has a negative impact on convergence time.
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Fig. 3. Evolution of the coefficient of correlation for: the noiseless case (solid), the quantized measurements case (cross), and

the exogenous noise case (dashed). The number of quantization levels is 64. The noise added to v̇ is white Gaussian with standard

deviation 10−2 along each axis. N = 100 agents were uniformly deployed in the rectangle [−2.5, −1.5] × [1.5, 2.5] × M and

simulated with sampling time 1. Refer to Fig. 2 for more details. [sampling time?r2]

Many factors may affect the convergence speed. In optimization applications with g = F n,
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Figure 4.1: Different stages of optimotaxis in the presence of two maxima.
Black dots represent agents position whereas the background intensity represents
the signal intensity. F (x) = 0.4e−‖x‖ + 0.6e−‖x−[1.5 −1.5]′‖, q(x) = F n(x) with
n = 10.

To quantify the convergence of the positions of the agents to desired distribu-
tion q(x), we compute the correlation coefficient between the vectors [G(Ai)]i and
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[GM,N(Ai)]i. This coefficient was calculated using a space grid with resolution
0.068 and its time evolution appears in Fig. 4.2.

Also included in Fig. 4.2 is the evolution of the correlation coefficient when the
measurements are quantized and when exogenous noise is added. In the quantized
case, we used the quantized version of the desired density q(x) to calculate the
coefficient. Interestingly, the addition of noise does not seem to considerably
affect the transient response. Nevertheless, the residual error is greater due to
the fact that the stationary density is not the one expected. On the other hand,
quantization has a negative impact on convergence time.

21

Fig. 2. Different stages of optimotaxis in the presence of two maxima. Black dots represent agents position whereas the

background intensity represents the signal intensity. F (x) = 0.4e−‖x‖ + 0.6e−‖x−[1.5 −1.5]′‖, g(x) = F n(x) with n = 10,

ρ(x) ≡ 1.
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Fig. 3. Evolution of the coefficient of correlation for: the noiseless case (solid), the quantized measurements case (cross), and

the exogenous noise case (dashed). The number of quantization levels is 64. The noise added to v̇ is white Gaussian with standard

deviation 10−2 along each axis. N = 100 agents were uniformly deployed in the rectangle [−2.5, −1.5] × [1.5, 2.5] × M and

simulated with sampling time 1. Refer to Fig. 2 for more details. [sampling time?r2]

Many factors may affect the convergence speed. In optimization applications with g = F n,
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Figure 4.2: Time evolution of the coefficient of correlation.
The noiseless case (solid), the quantized measurements case (cross), and the exoge-
nous noise case (dashed). The number of quantization levels is 64. The noise added
to v̇ is white Gaussian with standard deviation 10−2 along each axis. N = 100
agents were uniformly deployed in the rectangle [−2.5,−1.5]× [1.5, 2.5]×M and
simulated with sampling time 1. Refer to Fig. 4.1 for more details.

The sensitivity of the procedure with respect to the parameter n is studied
in Fig. 4.3. The mean-square error of the vehicles’ position with respect to the
maximum is used as a performance index. One notices that the performance
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degrades for n too low or too high. In particular, the sensitivity to noise and
quantization increases with n. This suggests that an interesting strategy to reduce
the effect of uncertainties and quantization is to assign agents with different values
of n. In this case, the observed density would converge to an arithmetic average of
the powers F n(x). Thus, the mean-square error would be smaller than the error
corresponding to the maximum or minimum value of the chosen n.

5 10 15 20 25 30 35

0.4

0.8

1

n

M
ea

n
Sq

ua
re

 E
rro

r

Figure 4.3: Mean-square error with respect to the maximum of F (x) = e−‖x‖ as
a function of n.
Noiseless case (solid), quantized F (x) (dashed), and exogenous noise (dash-
dotted). The number of quantization levels is 128. The noise added to v̇ is
white Gaussian with standard deviation 10−3 in each axis.

4.2.2 Reeds-Shep Car

We now consider optimotaxis when vehicles are subject to turning constraints but
are still able to immediately change between forward and backward motion. More

60



Chapter 4. Applications of Jump Control to Mobile Robotics

precisely, the dynamics of the vehicle is given by

f(x, v) =



v1 cos θ

v1 sin θ

ω


 , (4.6)

where x = [x1 x2 θ]
′, v = [v1 ω]′ ∈ M = {−v0, 0, v0} × {−ω0, 0, ω0} and ν is

the uniform probability density over M. This kind of vehicle is referred to in the
literature as the Reeds-Shepp car [84].

The vector field (4.6) satisfies the existence condition (3.6). Hence, we can use
λ and Tx as in Theorems 11 and 12 to make q an invariant density. More precisely,
λ = η − f · ∇x ln q and Tx ≡ 1.

Even though {f(x, v); v ∈ M} does not contain a positive basis for X, it is
still easy to verify the controllability condition in Theorem 12. Given x and y

in X, there is a trajectory linking these two points that consists of the vehicle
spinning around (x1, x2) until it is aligned with (y1, y2), and then moving in a
straight line to (y1, y2). The controllability condition would still hold true even if
zero linear velocity was not allowed. For that case, note that ϕvtx defines a circular
trajectory in X when v1 = v0 and ω = ω0. If (y1, y2) lies outside this circle, there
exists a tangent line to the circle passing through (y1, y2). Thus, a trajectory from
(x1, x2) to (y1, y2) consists of the vehicle moving along the circle and then along
this tangent line until it reaches (y1, y2). If (y1, y2) lies inside the circle, then the
vehicle only needs to move far enough from (y1, y2) before the procedure above
can be executed. Therefore, Theorem 12 gives the convergence of p(x,m, t) to
q(x).

Figure 4.4 illustrates how the empirical distribution indeed converges to the
desired density. It shows that this convergence is only slightly slower compared
to the unconstrained case of the previous section when ω0 = 0.3, but there is a
strong dependence in the turning speed as shown when this speed is decreased by
a factor of 2. It is worth mentioning that in the case for which 0 linear velocity is
not allowed convergence is only slightly slower than in the present case.
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Fig. 5. Evolution of the coefficient of correlation for the unconstrained turning case (solid), for the constrained turning case

with v0 = 1 and ω0 = 0.3 (dots) and for the constrained turning case with v0 = 1 and ω0 = 0.15 (cross). The simulation

setting is the same as of Figs. 2 and 3. [this figure is hard to read, r3][number of agents?r2]

C. Example 3

In this example vehicles make use of three beacons in order to navigate. In particular, vehicles

always move along straight lines towards or away from one of the beacons. Let X = R2,

M = {a, b, c} × {−1, 1}, where a, b, c (the position of the beacons) are three points in R2 not

in the same line, and ν is the uniform probability distribution over M. We take f(x, m) to be

f = m2(x − m1). Thus, we have three points in the plane that may be either stable or unstable

nodes. This is an example for which the divergence is not zero. According to Theorem 3, we

choose

λ = M − f · ∇ ln g − 2m2 , (38)

for some M sufficiently large. Note that f satisfies the hypotheses of Theorem 3, since a, b

and c are not aligned. The class of reachable densities includes those for which x‖∇ ln g‖ is
uniformly bounded, which includes all densities with polynomial decay. We note that a uniform
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Figure 4.4: Evolution of the coefficient of correlation under turning constraints.
Unconstrained turning case (solid), for the constrained turning case with v0 = 1
and ω0 = 0.3 (dots) and for the constrained turning case with v0 = 1 and ω0 = 0.15
(cross). The simulation setting is the same as of Figs. 4.1 and 4.2.

4.2.3 Navigation with beacons

In this example, vehicles make use of three beacons in order to navigate. In
particular, vehicles always move along straight lines towards or away from one of
the beacons located at positions a, b, c ∈ R2. Let d = 2, M = {a, b, c} × {−1, 1},
where a, b, c are not in the same line, and ν is the uniform probability distribution
over M. We take f(x,m) to be f = m2(x − m1), x ∈ R2, m1 ∈ {a, b, c}, m2 ∈
{−1, 1}. Thus, a, b and c are three points in the plane that may be either stable
or unstable nodes (depending on the sign of m2). This is an example for which
the divergence is not zero. According to Theorem 12, we choose

λ = M − f · ∇ ln q − 2m2 , (4.7)

for some M sufficiently large. Note that f satisfies the hypotheses of Theorem
12: since a, b and c are not aligned, {f(x,m);m ∈ M} is a positive basis (see
Remark 4). The class of reachable densities includes those for which x‖∇ ln q‖ is
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uniformly bounded, which includes all densities with polynomial decay. We note
that a uniform Tx is not the only one that achieves the desired density for such a
λ. For example, as noted in Remark 2, it is possible to choose Tx such that

Tx(m,m
′) =

1

4
1M−{m′1×{−1,1}}(m) . (4.8)

This jump pdf is such that jumps to the flows with the same fixed point are not
allowed. Yet, since λTx still defines a mode-irreducible Markov chain, we can
apply Proposition 8 to conclude convergence to the invariant density q.

4.2.4 Chemotaxis as Search and Deployment Applications

Chemotaxis in the bacterium E. coli can be seen as a good example of how the
jump control of probability densities is used in either search or deployment appli-
cations. In this section, we try to shed new lights on chemotaxis using our jump
control framework.

At present, there is little understanding of the interplay between the intracel-
lular dynamical system that describes signal transduction in E. coli ’s chemotaxis
and quantities such as the turning rate and turning distribution in a macroscopic,
population-level description of motion. With two qualitative assumptions on the
turning rate and and on the signal transduction mechanism, we can explain ex-
perimental observations and make conclusions about the stationary behavior of
the population of bacteria.

Assumptions on The Macroscopic Model

A derivation of the macroscopic behavior of bacteria from their internal (intracelu-
lar) dynamics is proposed in [34]. Both tactic and kinetic responses involve two
major steps: detection of the signal and its transduction into an internal signal
that triggers the response. The following expression for the jump (tumbling) rate
λ of a single bacterium was obtained in [34]) for the scalar case (Equation (6.36)):

λ = η − w(z(t))

dt
, (4.9)
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where λ0 > 0 is a constant, w is some function that models the internal dynamics
in the cell and z is the concentration of chemoattractant sensed by the bacterium
at time t. A similar expression was also derived in [2]. It was proposed in [95]
that integral feedback is the mechanism that explains how time derivatives as in
(4.9) are implemented. We further assume that the new orientation after tumbles
is uniformly distributed on the sphere and that a bacterium velocity is constant
in the run phase.

In the vast majority of the literature, it is the diffusion approximation of the
above model, initially proposed in [54], that is used to model chemotaxis. One
major limitation of this approximation is that it holds only for one-dimensional
spaces. Because we do not use this approximation, our conclusions are valid for
spaces with any dimension.

The Stationary Density

As before, let x be a space coordinate and let F (x) denote the concentration of
chemoattractant at position x, where we implicitly assume that the distribution
of chemoattractant remains (approximately) constant in time. This would cor-
respond to the consumption of nutrients occurring in a timescale that is much
slower than chemotaxis. We denote by pt(x) the probability density of a single
bacterium in space at time t. If the population of bacteria is large enough, we
can take pt(x) to approximate the concentration of bacteria at point x and time
t. With these assumptions, by Theorem 12 , the tumbling rate in (4.9) leads to a
stationary density

p∞(x) = c0e
w(F (x)) , (4.10)

where c0 is a normalizing constant.

Moreover, for a given stationary density c0e
w(F (x)), one can conclude from the

Fokker-Planck-Kolmogorov equation that the only tumbling rate that achieves
such a stationary density is the one given by (4.9) (up to an additive constant).
This suggests that a major reason why bacteria tumble according to (4.9) is that
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they seek some advantage from the ability of choosing the stationary density of the
population. We will return to this point later in the section.

Hypothesis of Maximization of Sensitivity Range

In biophysics, the fact that perception in sensory systems has a logarithmic depen-
dence on stimulus is well known as Weber’s law. The fact that chemotaxis obeys
Weber’s law has been first investigated in [65] with inconclusive results. Weber’s
law was later confirmed experimentally in [16] by applying an attractant concen-
tration with an exponential increase with time. More recently, [87] proposed a
model to explain Weber’s law in bacterial chemotaxis. Here we explain Weber’s
law based on the simple hypothesis that maximal sensitivity range is a desired trait
in bacteria.

In oder to find regions with higher nutrient concentrations (or to remain
in those regions), bacteria must be able to detect well a relative increment in
chemoattractant levels. In addition, this ability is desired for both high or low
chemoattractant levels. In other words, chemotaxis performance depends on the
sensitivity of bacteria to a wide range of chemoattractant concentrations. We de-
fine the sensitivity S to chemoattractants as the change in the response w caused
by relative changes in the stimulus z:

S(z) =

∣∣∣∣z
dw

dz
(z)

∣∣∣∣ .

We can rewrite the expression for sensitivity as

S(z) =

∣∣∣∣
dw

d ln z
(z)

∣∣∣∣ .

We assume that a minimum sensitivity of α is necessary for good performance,
where α may be determined by the level of disturbances such as rotational diffu-
sion (on the other hand, measurement noise should put an upper bound on the
sensitivity). Assume that z0 is the maximum concentration that can be sensed
by bacteria. Let us imagine, at first, that bacteria are free to choose w with the
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only condition that it lies in the interval [w,w]. With such conditions, it is a
simple exercise to verify that the functions w that maximize the range of effective
sensitivity α are

w = α ln
z

z0

+ w0 , (4.11)

where w0 is any constant satisfying w0 ≥ w. This result characterizes Weber’s law
as a direct consequence of the need to maximize sensitivity range.

Next, we argue that (4.11) can be well approximated by bacteria even if they
are not able to implement arbitrary functions w. To see this, let z̄ denote the
point of maximum of S(z). Then, z̄ satisfies the first order condition

dS
d(ln z)

(z̄) =
d2w

d(ln z)2
(z̄) = 0 .

Therefore, w as a function of ln z has zero curvature at the point of maximum
sensitivity z̄. This means that w is well approximated by an affine function of
ln z:

w(ln z) = w(z̄) + z̄w′(z̄)(ln z − ln z̄) + o((ln z − ln z̄)3) . (4.12)

A point of maximum sensitivity typically exists for w concave, in which case,
we have from the first order maximality condition that z̄w′(z̄) = −z̄2w′′(z̄) > 0.
Therefore, any concave function w with a point of maximum sensitivity can be
well approximated at the point of maximum sensitivity by α ln z+ b, where α > 0

and b are constants. In conclusion, (4.11) can be approximated as long as bacteria
tune w so that the typical values of z are close to the point of maximum sensitivity.

In the references above, w is typically modeled as the fraction of cellular re-
ceptors occupied by molecules of the chemical attractant, which leads to the usual
expressions found in cooperative binding:

w(z) =
κzH

KD + zH
, (4.13)

where κ is the number of receptors on the surface of a bacterium, KD is the
dissociation constant for binding of chemoattractants to the receptors and H is
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known as the Hill coefficient. A commonly used approximation to (4.13) around
the point of maximum sensitivity z̄ = K

1/H
D is precisely given by

w(z) ≈ κ
H

4
ln z − κ lnKD

4
+
κ

2
. (4.14)

By changing the parameters κ, H and KD, one can control α and the quality of
the logarithmic approximation.

Power Laws for Stationary Densities

The expression for w in (4.11) implies the following power law for the stationary
density p∞ in terms of the attractant distribution F :

p∞(x) = c0F (x)α .

As α increases, the density of bacteria in the neighborhoods of the maximum of F
also increases. This suggests that the factor α controls how greedy bacteria are.
One can envision two main possibilities here.

In the first situation, attractants do not constitute nutrients per se, but chem-
ical clues of where nutrients may be found. In this case bacteria seek the source
that is emitting the attractants and α should be high so that bacteria find the
source with high probability. This corresponds to chemotaxis working as in a
search application.

In a second situation, attractants are themselves nutrients being shared by
bacteria. If bacteria are greedy in this case, each bacterium will have less nutrients
than if they “cooperate”. Cooperation here is achieved by selecting α = 1 so that
there is an equal share of nutrients per bacterium. From Section 4.1.2, we have,
for α = 1, that the functional

Ept

[
ln

(
1

2
+

F

2pt

)]

increases monotonically in time to its maximum value 0. In words, under chemo-
taxis with α = 1, the average amount of nutrients per bacterium increases mono-
tonically in time towards a state of equal share.
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This state of equal share is known in ecology as the ideal free distribution
[50]. It is also argued in [50] that the ideal free distribution may correspond to a
different power Fα due to phenomena such as interference between competitors.
In [41], it was established that the ideal free distribution is a possible outcome of
the advection-diffusion approximation model for chemotaxis.

One interesting point is that, as opposed to the typical prey-predator dynam-
ics, the ideal free distribution is achieved as a result of an individualistic behavior
(without direct interaction among the bacteria), which suggests that it arises as
an evolutionary equilibrium. The idea of cooperation among bacteria is corrob-
orated by the phenomenon of chemotactic signaling, according to which bacteria
cooperate by emitting attractants or repellents to indicate to others the presence
or scarcity of nutrients respectively [13].

In summary, we have concluded that their tumble and run behavior give bac-
teria the flexibility to alternate between search and deployment objectives.

Power Laws in Experiments

Only with recent advances in microfluidic devices it was possible to submit bacteria
to a constant field F and measure their response with a good precision [51, 1].
This attractant profile is kept constant not only because the microfluidic devices
but also because it is non-metabolizable. In these papers, chemotaxis occurs in a
two-dimensional environment but with a one-dimensional gradient.

We can plot the steady-state concentrations of attractants and bacteria ob-
tained in these papers to uncover the predicted power law. Although consistently
linear for each log-log plot, the results in Figure 4.5 suggest that α may vary
according to the average attractant concentrations.

A different strain of E. coli was considered in [1]. The power laws for the
experiments in this paper reveal a more consistent slope α, see Figure 4.6. How-
ever, the linear fit with the data points given by the asterisk is not a good fit
because the gradient utilized had strong discontinuities, which is not covered by
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Figure 4.5: Log-log plots of bacteria concentration for the attractant gradients
shown in Figures 2 and 5 of [51]
Slopes of the linear fits: α = 5.7 (*), α = 8.3 (circle), α = 16.1 (diamond).

our model. Bacteria seem to be tricked to form sharp density peaks around such
discontinuities.

We can also calculate α from the data analysis in these papers. Chemotaxis
is modeled in these papers using the following diffusion approximation for the
density p of bacteria:

∂p

∂t
=

∂

∂x

(
µ0
∂p

∂x
− VCp

)
(4.15)

VC =
8V

3π
tanh

[
χ0π

8V

d

dx

(
F

KD + F

)]
, (4.16)

where µ0 is a diffusion coefficient, VC represents the drift in velocity toward higher
attractant concentrations, V is the two-dimensional swimming speed and χ0 mea-
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Figure 4.6: Log-log plots of bacteria concentration for the attractant gradients
shown in Figures 1, 5 and 6 of [1]
Slopes of the best linear fits: α = 2.9 (cross), α = 2.6 (+), α = 1.6 (*).

sures the strength of attraction of the cells to a given attractant. We can use the
logarithmic approximation in (4.14) to rewrite the velocity drift as

VC ≈
χ0

12

d lnF

dx
. (4.17)

Plugging this approximation for VC in (4.15) and solving for the invariant density,
we obtain:

p∞ ≈ F
χ0

12µ0 . (4.18)

In [51], constant gradients of attractant ∇F were applied to bacteria and the
velocity drift VC was measured as a function of ∇ lnF . In terms of the exponent
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α, (4.17) and (4.18) give the relation

VC
µ0

= α
d lnF

dx
.

Thus, α is the slope of the curve VC versus ∇ lnF . From Figure 6 in [51], we can
extract values for α in the range [10, 30] with 14 being the best fit.

A different strain of E. coli was considered in [1], where different shapes of
attractant F (x) were applied to a population of bacteria and then (4.15)-(4.16)
was fitted to the data by identifying µ0 and χ0. We can use the average values
µ0 = 6.6± 0.6 cm2 s−1 and χ0 = 4.5± 0.3 cm2 s−1 to obtain α = 5.7± 0.9. These
relatively high values of n indicate that chemotaxis works as a source-seeking
mechanism for the attractant used in the experiments (α-methyl-aspartate).

Interestingly, the values of α obtained by logarithmic fitting and by model
fitting seem to be off by a factor of 2 in both papers. Since χ0 and µ0 were
calculated from the diffusion model to fit the experimental results, one should
expect that they would predict a value for α consistent with the experiments.
This suggests that the factor of 2 may come from some mistake in the model or
in the numerical calculations. A second problem is the variation of the observed
exponent α with different experiments. It is not clear whether these inconsistencies
come from the model or from experiments. On one side, [51] presents exponents
α that vary from experiment to experiment. On the other side, [1] presents a
relatively consistent value for α. To clarify these issues, it would be valuable to
perform experiments designed with the objective of measuring α.

A limitation of our model that could affect results is that we do not take
into account the time that bacteria spend tumbling or the possible biases in the
distribution of reorientations.

4.2.5 Bacterial Robots

A recent paper [49] has proven the idea of using bacteria as micro-actuators to be
a plausible reality. In this paper, microstructures are used to attach hundreds of
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bacteria to a plate in a way that their flagella are free to rotate. As a result, the
plate could be moved using bacterial power. A limitation of the experiment is that
it is not possible to control the motion of the plate. If one is able to tether bacteria
to the plate in such a way that they are free to reorient during tumbles, then we
show next that the plate will have a translational motion similar to chemotaxis.
With such an artifact, it would then be possible to use chemoattractants to move
the plate to some desired position.

Let N be the total number of bacteria attached to the plate and let mi denote
the propulsive force of the i-th bacterium. As in [49], the total velocity of the
plate is given by

v =
1

kT

N∑

i=1

mi ,

where kT is the viscous drag coefficient. As in the previous sections, assume the
existence of a time-invariant attractant profile F = q1/n. Assume further that the
variation of F is insignificant along the plate so that the plate can be viewed as
point with position x. Using the tumbling rate model of the previous section, the
tumbling rate for each bacterium is now given by

λi = η − v · ∇x ln q .

Let p(x,m1, . . . ,mN , t) denote the probability density of the plate being at x with
forces mi for the i-th bacterium at time t. Then, we have the following Fokker-
Planck-Kolmogorov equation for p:

∂p

∂t
+ v · ∇xp = −

N∑

i=1

λip+
N∑

i=1

∫

M
λi(x,miC ,m

′)p(x,miC ,m
′)ν(dm′) ,

where (miC ,m
′) denotes the coordinates (m1, . . . ,mN) with the i-th entry replaced

by m′. Replacing p by q, we verify that this is indeed a stationary density:

0 + v · ∇xq = −N(η − v · ∇x ln q)q + q

N∑

i=1

(η − (v −mi/kT ) · ∇x ln q)

= −N(η − v · ∇x ln q)q + q(N − 1)(η − v · ∇x ln q) + ηq

= v · ∇xq .
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Now, the same arguments as in Chapter 3 can be used to conclude that the
resulting process is aperiodic Harris recurrent with invariant density q. This result
means that the chemical gradient achieves the effect of synchronizing the bacteria
and make them move the plate towards the same gradient. More surprisingly,
perhaps, simulations show that the same convergence speed as in Figure 4.2 is
obtained independently of N .

4.3 Comments and Open Problems

Besides doing simulated annealing and finding stopping rules for the search and
monitoring problem, one of the most interesting extensions of the work in this
chapter would be to explore the communication among agents. This could lead
to faster convergence, better stopping rules or to new deployment configurations.

Exploring communication is particularly challenging if agents cannot measure
their positions. In this case, the information conveyed by a neighboring agent may
be its measurement of the scalar field and its relative distance or position (inferred
from the radio signal). A plausible way of exploring this extra information is to
add it to the function q in a sensible way and to execute the same algorithm (much
like in the potential field methods in [46]).

Other relevant direction is to study the case of a time-varying scalar field q,
which could represent either a moving source or the diffusion of the measured
quantity.

Regarding the relationship between jump control of probability densities and
chemotaxis, there are some experimental observations that need clarification and
it would be useful to perform experiments directly designed for this purpose.
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Lyapunov Analysis

Markov processes with jumps, such as piecewise-deterministic Markov processes,
offer a significant challenge to the construction of stability proofs due to the in-
tricate nonlocal interactions in the state space that are introduced by jumps. Lya-
punov stability criteria for such processes involve solving partial integro-differential
inequalities, which is typically difficult to do numerically. This chapter shows that
Lyapunov functions for such processes may be obtained from the minimization of
a convex functional that arises in the theory of large deviations [27, 56]. In par-
ticular, we show that the Lyapunov function that maximizes a specific measure
of convergence often used in large deviations theory satisfies a nonlinear integral
equation without differential terms in the unknown. This equation is considerably
simpler than integro-differential inequalities and we present cases in which it can
be solved in closed form.

Our method was developed in the attempt to find Lyapunov functions for the
PDPs in Chapters 3 and 4, where stability is proven without the use of Lyapunov
techniques. The key advantage in using the Lyapunov-based techniques to prove
stability of a Markov process is that one obtains information about the rate of
convergence of the process to the steady-state. In particular, the method used
in this chapter to construct Lyapunov functions provides conditions under which
the law of the process in optimotaxis converges exponentially fast to the steady-
state distribution. Information about the speed of convergence is important to
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(1) estimate how long one needs to wait to be sufficiently close to the steady-state
distribution and (2) design processes with fast convergence rates. This second
point is exploited in Section 5.2.

The results in this chapter have the limitation that, even for a process for which
the law of the process converges exponentially to the steady-state distribution, it
could happen that the solution to our optimization is not a Lyapunov function.
In practice, this means that one needs to verify if the function obtained by the
procedure we propose is indeed a Lyapunov function, which is often a simple
procedure.

5.1 Lyapunov Functions for Optimotaxis

In this section we give a Lyapunov proof for exponential ergodicity of the PDP for
optimotaxis. The process represents vehicles moving with position x ∈ X = Rd

and velocity v ∈ M = Sd. The measure ν is the Lebesgue measure on the sphere
modulo a normalization factor. The vector fields are given by f(x, v) = v. The
jump intensity is chosen such that λ(x, v) = η−v ·∇ ln q(x), where the constant η
is a design parameter that must be chosen such that λ is nonnegative. As before,
for such a η to exist it is necessary that ln q be globally Lipschitz. The jump kernel
is such that x does not change and v has a jump distribution that is uniform on
M. More precisely,

Qh(x, v) =

∫

M
h(x, v)ν(dv)

for h ∈ B(Y). We have shown in the previous chapters that a process with these
characteristics has indeed an invariant density q(x).

Finding Lyapunov functions for this process is difficult due to the intricate re-
lationship between the continuous state x and the discrete mode v. To illustrate
this, we consider the Metropolis-Hastings algorithm, which is a classic MCMC
algorithm. Optimotaxis and Metropolis-Hastings are similar in the sense that
the probabilities to reject a point in Metropolis-Hastings and the probability to
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reject a velocity v in optimotaxis are essentially the same. The main difference
is that, because in Metropolis-Hastings the state represents a variable in a com-
puter, the controller can look at a point and reject it without moving the state
to that point, which in turn is not possible if the state represents the position of
a physical vehicle. In [77], it is shown that q−1/2 is a Lyapunov function for the
Metropolis-Hastings algorithm in terms of the goal distribution q [indeed, this is
also a common Lyapunov function for diffusions]. However, it is is easy to see
that no function that is independent of v can satisfy the drift condition (D1) for
optimotaxis.

Using the method developed in the following sections, we were able to find a
Lyapunov function for optimotaxis which turns out to be a nontrivial modifica-
tion of the Lyapunov function for the random walk generated by the Metropolis-
Hastings algorithm. This Lyapunov function is u = λ1/2q−1/2. With such a u we
conclude exponential ergodicity of the PDP in the following theorem. For some
ε > 0, let η be a constant such that

‖∇x ln q(x)‖+ ε ≤ η <∞ . (5.1)

We note that a constant η is not necessary for our result, but it will simplify
our proof. The next assumption characterizes distributions with exponentially
decaying tails.

Assumption 6. 1. ‖∇x ln q‖ is bounded

2. lim inf‖x‖→∞ ‖∇x ln q‖ > 0

3. The Hessian Hxx ln q converges to 0 as ‖x‖ → ∞.

Theorem 14. Suppose that the output function q satisfies Assumption 6. Then,
for η as in (5.1), u =

√
λ/q is a Lyapunov function for the PDP and the PDP is

exponentially ergodic:

‖P t((x, v), ·)− µ‖u ≤ B0ue
−b0t
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for some positive constants B0 and b0 and any initial condition (x, v) ∈ X ×M,
where dµ = qdm.

In the next sections, we describe the process that led to the construction of
this Lyapunov function, but for now we prove this result using Theorem 5.

Proof. Because λ > ε and v is restarted uniformly after jumps, we have that, for
any A, C ∈ B such that `(A) > 0 and C is compact, there exists a time T < ∞
such that the probability of reaching A from C is positive for t ≥ T . This shows
that the process is `×ν-irreducible and aperiodic with compact sets as petite sets.
From (5.6) in the next subsection we have

Lu ≤ −c0

2
u+ b1C ,

for u = q−1/2
√
λ, a compact set C and positive constants b and c0. We can then

apply Theorem 5 to conclude the result.

The condition of q having an exponentially decaying tail in Theorem 14 is
necessary. To see why, note that the vehicles’ finite velocity 1 gives a bound on
how fast the support of a distribution can grow. For a vehicle starting at the
origin, the stationary density is approached with an error not smaller than

∫

‖x‖>t
q(x)`(dx)

at time t, which [in the symmetric scalar case] gives the exponential rate of decay

lim
r→∞

q(r)∫
x>r

q(x)`(dx)
= − lim

r→∞
d(ln q(r))/dr .

Therefore, for convergence to be exponential, q must decay exponentially. In the
next subsection, we describe how we apply our method to construct a Lyapunov
function for optimotaxis.
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5.1.1 Constructing a Lyapunov function

Our starting point is the candidate Lyapunov function

u = γ(x)
√
λ , (5.2)

where γ(x) is some uniformly positive function to be identified. How we came to
this candidate Lyapunov function is the theme of the next sections.

Since the considered PDP is ` × ν-irreducible and compact sets are petite,
we only need to analyze the behavior of Lu as ‖x‖ goes to infinity. From the
definition of the generator in (2.7), we have

Lu
u

=
1

2
v · ∇x lnλ+ v · ∇x ln γ − λ+

√
λ

∫ √
λ dν . (5.3)

Define the auxiliary funcitons α := v · ∇x ln q and β :=
∫ √

λ dν =
∫ √

η − α dν.
We can rewrite (5.3) as

Lu
u

= −1

2

v′ Hxx ln q v

λ
+ v · ∇x ln γ + α + β

√
η − α− η ,

where ′ denotes the transpose. Let γ(x) = q(x)−k for some constant k > 0. Then,
we can rewrite

Lu
u

= −1

2

v′ Hxx ln q v

λ
− kα + α + β

√
η − α− η .

We split the right-hand side into two parts and analyze them separately:

A := −kα + α + β
√
η − α− η

B := −1

2

v′ Hxx ln q v

λ
.

Maximizing A on α ∈ [−η, η], we have the worst-case bound

A ≤ −ηk +
β2

4 (1− k)
. (5.4)

We can find the roots of the right-hand side of (5.4) as a function of k to conclude
that A ≤ 0 for

1−
√

1− β2/η

2
≤ k ≤ 1 +

√
1− β2/η

2
.
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In special, A ≤ 0 holds independently of β if and only if k = 1/2. When γ = q−1/2,
we have

A ≤ β2 − η
2
≤ 0 , (5.5)

where the last inequality follows from Jensen’s inequality. In addition, equality
holds if and only if λ does not depend on v. This analysis provides the valuable
intuition that the term A in the convergence rate is taking into account how
inhomogeneous the jump rate is in v or how large ‖∇x ln q‖ is. Thus, for γ = q−1/2,
we have A ≤ 0 with equality if and only if ∇x ln q = 0.

One can also prove that the bound on A is minimized for η as small as possible.
Thus, an important design principle that follows is that η must be chosen as small
as possible in order to minimize the bound on A and therefore maximize the
convergence rate.

To analyze the interplay between A and B, we make a distinction between two
typical cases: a) when q has an exponential tail, e.g., q = exp(−c‖x‖); and b)
when q has a polynomial tail, e.g., q = ‖x‖−c for ‖x‖ large.

Invariant density with exponential tail

In this case, lim inf‖x‖→∞ ‖∇x ln q‖ > 0 and, therefore, there is a positive constant
c0 such that β2 < η− c0 for ‖x‖ large. On the other hand, Hxx ln q is bounded by
a constant times ‖x‖−1 for ‖x‖ large. Thus, A dominates B and we can use the
bound in (5.5) to conclude

lim sup
‖x‖→∞

Lu
u
≤ −c0/2 , (5.6)

for u = q−1/2
√
λ.

Invariant density with polynomial tail

Both A and B decay as ‖x‖−2 in this case. As a consequence, our candidate
Lyapunov function cannot be used to prove exponential ergodicity. Yet, it may be

79



Chapter 5. Lyapunov Analysis

used to prove W-ergodicity. Results here depend on the specific invariant density
q. Because β → 0 as ‖x‖ → ∞, a Lyapunov function u = q−k

√
λ maintains A

nonpositive for x large only if k = 2. Thus, if we are interested in using this u in
a Lyapunov stability proof when q has a tail of order ‖x‖−c, we need c ≥ 4 since
Lu is of the order ‖x‖c/2−2. This is consistent with the fact that q is not a valid
probability density when c ≤ 1.

5.2 Consequences for the design

The analysis in the previous section suggests how we can change the algorithm
of optimotaxis to improve convergence properties. We do this by increasing the
nominal velocity. To this purpose, we redefine the vector field and the jump rate
to be f = vρ, for some scalar nominal velocity ρ. We can rearrange (3.13) to write
the resulting jump rate as

λ = ρ(η − v · ∇x ln qρ) . (5.7)

All other parameters are kept the same.

When ρ is a constant, we have that our previous Lyapunov function u =√
(η − v · ∇x ln q)/q has its convergence rate Lu/u in (5.3) multiplied by ρ. Pro-

vided the original process is exponentially ergodic, one can improve the conver-
gence rate in the tail of u arbitrarily by increasing ρ. This, however, could even
worsen the convergence rate to steady-state since it only takes into account the
behavior on the tails. Following our analysis in the previous section, the term
A would become more negative, but the term B would become necessarily more
positive on the neighborhoods of the maxima of q. Intuitively, to have good con-
vergence one wants vehicles to move slowly in the neighborhoods of the maxima
of q and to escape quickly from the regions where q is small. This motivates the
use of a modulated nominal velocity ρ(q(x)) with the properties just mentioned.

For f = vρ(x), one can verify that (5.7) still satisfies (3.13) in Theorem 12 as
long as η > ‖∇x ln ρq‖. Because the divergence of f is no longer zero, we must
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alter the implementation rule (3.11) to

ρ(x(t))z(t) ≤ reη(t−τk)ρ(x(τk))z(τk), t ≥ τk .

For this process, one can use the method in the next sections with p = 1/ρ

to find the Lyapunov function u =
√
λq/ρ that proves exponential ergodicity

provided ‖∇x ln qρ‖ is uniformly positive for ‖x‖ large. This new design is illus-
trated in Fig. 5.1, where we see that an output dependent ρ in the range [23, 40]

improves speed of convergence with respect to ρ = 25 while ultimately providing
better convergence than ρ = 50 [after vehicles approach the maxima of q].
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Figure 5.1: Evolution of the coefficient of correlation for an adaptive velocity.
Measure function is q(x) = 0.4e−‖x‖ + 0.6e−‖x−[1.5 −1.5]′‖ for ρ = 25 (dot-dashed),
ρ = 50 (dashed) and ρ = 40 tanh([23 + 1/q2]/40) (solid). Further simulation
details in Chapter 4.
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5.3 Lyapunov Functions and Rate Functions

In this section we discuss how one can obtain Lyapunov functions for PDPs by
solving relatively simple convex optimization problems. Such Lyapunov functions
are related with a notion of convergence rate that appears in the theory of large
deviations of Markov processes [27]. For a probability measure ζ on B, we define
the rate function

I(ζ) := sup

{∫
−Lu
u

dζ : u ∈ D(L), u ≥ 1

}
. (5.8)

Intuitively, we can think of −Lu
u

evaluated at y ∈ Y as the rate of convergence
of the function u at the point y and, therefore, I(ζ) would correspond to the
fastest ζ-weighted average rate of convergence achievable for some function u in
the domain of the generator. Rate functions have a fundamental role in the study
of the probability of rare events in the context of large deviations theory. However,
it is not common to solve the maximization posed in (5.8) explicitly. Our objective
is to construct a Lyapunov function u by solving this maximization problem.

A converse result is given in the following proposition, which is proven in
Section 5.3.4. We say that a function W0 grows strictly slower than W if

lim sup
‖x‖→∞

|W0(x)|
|W (x)| = 0.

We denote this relation by W0 � W . Consider the following drift condition:

(D3) For a constant c > 0, a function W > 1 and a small function s, the
function V : Y → [1,∞) satisfies

LV ≤ −cWV + s .

Proposition 9. Suppose that the V -exponentially ergodic process Φ(t) satisfies
the drift condition (D3) with W unbounded off petite sets. Then, given u0 ∈ D(L)

satisfying 1 ≤ u0 ≤ V and the growth condition −u−1
0 Lu0 � W , there exists

a unique probability measure ζ such that u0 attains the supremum in (5.8). In
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particular, this is true for all Lyapunov functions u0 satisfying the growth condition
−u−1

0 Lu0 � W .

In view of [56], we can rewrite the rate function in terms of an optimization
problem that will be shown to be convex:

I(ζ) = sup
{
〈ζ,−e−ULeU〉 : eU ∈ D(L)

}
(5.9)

where 〈·, ·〉 denotes integration. From this point on it is convenient to assume that
D(L) is an algebra and that ψ ∈ D(L) implies eψ ∈ D(L).

Along with convexity, another important property of the functional 〈ζ,−e−ULeU〉
is that it depends affinely of the differential operator f ·∇. As a consequence, this
operator does not appear in the first variation optimality condition (5.10) or in
the second variation of 〈ζ,−e−ULeU〉. This allows one to exploit the compactness
properties typically present in jump kernels.

Some useful facts about I(ζ) are established in [56] for the discrete-time case.
From [56, Prop. 4.9], we have that I(ζ) ≥ 0 and I(ζ) = 0 if and only if ζ is
an invariant measure for Φ , and in this case the supremum is attained by any
constant function. Also from [56, Prop. 4.6] we have that I(ζ) < ∞ only if ζ is
absolutely continuous with respect to the invariant measure for Φ.

In the following theorem we provide a sufficient condition for a function to
attain the supremum in (5.9). Define K = λQ.

Theorem 15. i. The optimization problem in (5.9) is a convex optimization
problem in U .

ii. A sufficient condition for u = eU ∈ D(L), U ≥ 0, to attain the supremum in
(5.8) for dζ = p d(`× ν), p ∈ D(L∗), is

uK∗
(p
u

)
−∇ · fp− p

u
Ku = 0 `× ν-a.e. (5.10)

iii. Suppose eU is a solution to (5.10). Then, eG ∈ D(L) is also a solution if and
only if G(y)− U(y) = G(z)− U(z) ζ(dz)K(z, dy)-a.e.
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The proof is provided in Section 5.3.3. Roughly speaking, Theorem 15 (iii)
implies that the set of solutions to (5.10) is invariant under multiplication by
harmonic functions of Q (i.e., functions h such that Qh = h). In particular, this
is always true for multiplication by a constant.

5.3.1 Computation of Optimizers

The main result in this section lies in the observation that solving (5.10) for u
can be done with relative ease for a significant number of PDPs. This is true
because (5.10) has no differential terms in u, which makes it possible to exploit
the compactness properties of K. In particular, when K and K∗ have finite rank,
solving (5.10) reduces to a finite-dimensional problem. A wide class that satisfies
this property is given by a generalization of the Markov Jump Linear systems in
[31], where one may allow Markov transitions to depend on the continuous state.
This is also the case of our optimotaxis example, where a closed form solution to
(5.10) is provided.

To see why this is possible, note that we can rewrite (5.10) using the fact that
u solves an implicit quadratic equation:

u =
∇ · pf +

√
(∇ · pf)2 + 4pK(u)K∗(p/u)

2K∗(p/u)
. (5.11)

When K and K∗ have finite rank, this expression defines a finite dimensional
manifold where u lies. Therefore, even when it is not possible to solve (5.11)
explicitly, this equation gives us structure to make good guesses for candidate
Lyapunov functions.

One can also attempt to solve (5.11) via an iterative procedure as follows:
given un, replace u on the the right hand side of (5.11) with un and define un+1 to
be that value modulo some normalization. The normalization is necessary since
the class of solutions to (5.10) is invariant under multiplication by a constant.
Under reasonable conditions, this iteration is verified to converge for finite rank
jump kernels.
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A possible but more difficult technique to solve the convex functional mini-
mization is to use gradient methods as presented in [97] for example. The success
of these methods depends on the gradient being locally Lipschitz and uniformly
monotone, which are properties that seem to be linked with exponential ergodicity.

Finally, it is important to remark that this is the point where our approach
takes advantage of the specialized setting of PDPs. If, for example, one was
to consider a purely deterministic process, the solution set to (5.10) would be
trivial (either empty or the whole space of functions) and u cannot be used as a
Lyapunov function. On the other hand, nontrivial results can be obtained in the
nondeterministic case. But, when one considers a general process that includes
both jumps and diffusion, the solution to (5.10) is typically difficult, since one
would be dealing with a partial integro-differential equation.

5.3.2 A Candidate Lyapunov Function for Optimotaxis

Although K = λQ is not a compact operator in B(Y = X×M), it is a finite rank
operator in B(M) for every fixed x ∈ X. In fact, if we regard Q as an operator in
B(M) for a fixed x, its range is spanned by the constant function. Moreover, the
operator Q has the property that Q(α(x)ψ) = α(x)Qψ for any ψ ∈ B(Y) and any
α independent of v. This implies that the set of solutions to (5.10) is invariant
under multiplication by a function of x only.

We obtain from (5.11)

u =
v · ∇p+

√
(v · ∇p)2 + 4λp

∫
u dν

∫
λp
u
dν

2
∫

λp
u
dν

.

This implies that there exist functions r and s such that u satisfies the following
structure

u = r(x)
(
v · ∇p+

√
(v · ∇p)2 + λps(x)

)
.

Let p be a multivariable normal distribution and let its covariance tend to
infinity. The u that results from the limit is equivalent to that we would obtain
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with p = 1, but in this case p would not be integrable. Although our theory has
no need to restrict ζ to be a probability measure, we avoid this path due to its
more complicated interpretation. The resulting limit satisfies

u = r(x)
√
λs(x) .

Recalling that the set of solutions to (5.10) is invariant under multiplication by a
function of x only, we have

u = γ(x)
√
λ . (5.12)

for any γ(x) such that u ∈ D(L).

This u can be interpreted as the function that maximizes the rate of con-
vergence with equal weight for every (x, v). It is clear that not all elements of
the form (5.12) are Lyapunov functions for the PDP. However, we have arrived
to a structure for Lyapunov functions without which we were not able to find
Lyapunov functions in the past.

5.3.3 Proof of Theorem 15

General convexity results analogous to the ones in the theorem have a straightfor-
ward derivation in the discrete-time case as in [56]. Unfortunately, we have to be
more careful in the continuous-time case and explicitly use the generator of the
process. Define

H(G) := e−GLeG = f · ∇G+ λ(e−GQeG − 1) .

To verify convexity of 〈ζ,H(·)〉, we note that, for constants α, β > 0 and F,G ∈
D(L),

〈ζ,H(αF + βG)〉 = α〈ζ, f · ∇F 〉+ β〈ζ, f · ∇G〉+
∫
ζ(dz)K(z, dy)eα(F (y)−F (z))+β(G(y)−G(z)) .
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Convexity therefore follows from the convexity of the exponential function. More-
over, the convexity inequality is strict unless

F (y)−G(y) = F (z)−G(z) ζ(dz)K(z, dy)-a.e.

This proves item (i). To prove (ii), we consider the difference

H(G+ F )−H(G) = f · ∇F + λe−GQeG(e−FQge
F − 1) ,

where Qgh = Q(eGh)
QeG

is a Markov kernel. By a convexity argument, we have that

e−FQge
F − 1 ≥ ln e−FQge

F ≥ QgF − F .

This allows us to write

H(G+ F )−H(G) ≥ f · ∇F + λe−GQeG(QgF − F ) =: LgF . (5.13)

Following [56], for example, Lg is known as the generator of the twisted semigroup
and it can be written in the general form

Lgh = e−GL(eGh)− he−GLeG

for g = eG. Conditions under which the generator of twisted semigroup is the
Fréchet derivative of H are given in [56]. Here, to keep our set of assumptions
minimal, we use Lg only as a subdifferential of H. Therefore, a sufficient condition
for U to be a maximizer of 〈ζ,−H(·)〉 is that ζ be an invariant measure for the
twisted semigroup generated by Lu. Indeed, in this case we have

〈ζ,H(U + F )−H(U)〉 ≥ 〈ζ,LuF 〉 = 0 ,

for all F ∈ D(L). A sufficient condition for ζ, dζ = p d(`× ν), to be an invariant
measure under Lu is that L∗up = 0, which can be written as (5.10). Finally, we
note that necessary and sufficient conditions could be obtained following the more
general framework in [56].
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5.3.4 Proof of Proposition 9

From our characterization of optimizers in the proof of Theorem 15, it is sufficient
to find ζ such that it is the invariant probability measure of the semigroup gen-
erated by Lu0 . Next we show that the Lu0 satisfies the drift condition (D2) and,
therefore, the measure ζ exists uniquely. From (5.13), we have that the process
generated by Lu0 has the same drift term as the original process and a jump term
such that, if a jump is probable for the original process, it is also probable for the
new process. This implies that the process generated by Lu0 inherits irreducibility
from the original process. This process satisfies the drift condition with Lyapunov
function V0 = V/u0:

Lu0V0 =
L(u0V0)− V0Lu0

u0

= V0(V −1LV − u−1
0 Lu0) .

The growth condition u−1
0 Lu0 � W and the fact that W is unbounded off petite

sets guarantee that there exist constants c0 > 0, b0 <∞ and a petite set C0 such
that

Lu0V0 ≤ −c0WV0 + b01C0 .

5.4 Example: A Scalar Linear Transport Process

In this section we show how the method proposed above can be applied to a process
different from optimotaxis. The process we consider in this example appears in
many fields ranging from neutron transport phenomena to biology (see [73] and
references therein). This well-studied process provides a simple example of how
our method can be used to find Lyapunov functions in closed form. This process
describes a particle with position x ∈ X = R moving with velocity v ∈ M =

{−1,+1}. Velocity jumps may occur with intensity λv(x) ≥ ε > 0 and with
jump kernel Q = δ{−v}, where δ denotes the Dirac mass. A process so defined is
aperiodic and irreducible, with compact sets being petite.
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From (5.11), we can derive an optimizer of the form

uv(x) =
v · ∇pv +

√
(v · ∇pv)2 + 4pvλvu−vλ−vp−v/u−v

2p−vλ−v/u−v
.

As above, take the limit as p→ 1. The resulting limit satisfies

uv(x) = u−v

√
λv
λ−v

.

Therefore, the class of minimizers is characterized by functions of the form

uv(x) = γ(x)
√
λv

where the function γ depends only on x . To construct a Lyapunov function, we
need now to select γ properly. To this purpose, we evaluate

Luv
uv

= v(ln γ)′ +
v

2
(lnλv)

′ +
√
λvλ−v − λv

where ′ denotes derivative with respect to x. In order to make the right-hand side
negative for both values of v, we must choose γ so that

− 1

2
(lnλ−1)′ +

√
λ1λ−1 − λ−1 < (ln γ)′ < −1

2
(lnλ1)′ −

√
λ1λ−1 + λ1 .

Assuming that the inequalities hold, we choose (ln γ)′ to be the mean of the two
bounds:

(ln γ)′ = −1

2
(ln
√
λ1λ−1)′ +

1

2
λ1 −

1

2
λ−1 .

This leads to a consistent choice of γ ≥ 1 as long as λ1 ≥ λ−1 in the positive tail
and λ1 ≤ λ−1 in the negative tail. For this choice of γ we have

Luv
uv

=
1

2

(
ln

√
λ1√
λ−1

)′
+
√
λ1λ−1 −

λ1 + λ−1

2
. (5.14)

For x large enough, the derivative term in the right-hand side of (5.14) is either
dominated by λ1 or negative. Therefore, exponential ergodicity depends solely
on the difference between the geometric and the arithmetic averages of the jump
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intensities, which is uniformly negative provided |λ1− λ−1| > 0 uniformly outside
a compact set.

In summary, we have constructed a Lyapunov function that predicts exponen-
tial ergodicity for the transport process given that there exists ε > 0 such that
sgn(x)(λ1 − λ−1) > ε for x large enough. If this condition holds with ε depending
on x but decaying more slowly than 1/|x|, one can show that Luv < 0 uniformly
off a compact set, which is the drift condition (D1) for ergodicity. These results
are consistent with the expression for the stationary probability density qv(x) for
this process [73]:

qv(x) + q−v(x) = c exp

(∫ x

0

(λ−1 − λ1) dz

)
. (5.15)

This density is integrable if and only if sgn(x)(λ1 − λ−1) > 0 decays more slowly
than 1/|x|, which shows that our candidate Lyapunov function provides noncon-
servative conditions for ergodicity. Although this is not the focus of our con-
tribution, it is worth mentioning that, to the best of our knowledge, there is no
similar Lyapunov approach to this problem in the literature. Finally we note that,
despite the similarities with optimotaxis, this example shows that our technique
can construct Lyapunov functions for processes with jump kernel qualitatively
different.

5.5 Comments and Open Problems

We have presented a method for the construction of Lyapunov functions for PDPs
based on the maximization of a certain notion of rate of convergence. This method
allowed us to construct a Lyapunov function to prove exponential ergodicity for
the optimotaxis algorithm. On the optimotaxis end, it would be interesting to
use Lyapunov functions to design annealing schemes and to predict convergence
rates. Lyapunov functions also provide a norm in which the process behaves
continuously with variations in the model and, therefore, can be used to predict
robustness properties of the process.
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Regarding our approach to construct Lyapunov functions, some open questions
are how one can select ζ such that the maximizer function is guaranteed to be
a Lyapunov function; and to find general conditions under which the iterative
procedure suggested in Section 5.3.1 converges to the solution of the optimization
problem.
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Chapter 6

Redundant Data Transmission in
Control/Estimation over Lossy
Networks

In the new generations of wireless communications (3G and 4G), channel adaptive
techniques are able to provide large improvements in almost any performance met-
ric. These techniques utilize an adaptive allocation of communication resources
as the channel conditions change with time. This chapter explores a similar idea
in the context of networked control systems (NCS). In addition to compensating
for the uncertainty generated by the channel, we aim at allocating communication
resources to compensate for the uncertainty being generated within the controlled
process. These adaptive techniques are well-suited for NCSs because they permit
an increase in the reliability of communication without increasing the transmission
delays, to which NCSs have low tolerance.

Adaptation can be achieved by adjusting the transmit power, by adaptive cod-
ing (an example of which is changing the quantization coarseness) and by diversity
schemes, which consist of the transmission of redundant signals through mostly
independent channel realizations. Diversity schemes may involve using multiple
time slots, frequency slots, antennas or network paths [86]. While many diversity
schemes are dynamically exploited in data networks by scheduling transmissions
according to the network status (see e.g. [30, 94]), these techniques do not take
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into account nor benefit from the dynamical nature of NCSs. In this chapter we
focus on diversity schemes and show that something as simple as transmitting mul-
tiple independent copies of the same packet can provide significant performance
gains in the context of NCSs.

The adopted NCS architecture is depicted in Fig. 6.1, which considers the
case of a single sensor and a controller. We assume that, by means of some
diversity scheme, a number of independent redundant channels is available for data
transmission. These are erasure channels with i.i.d. probabilities of packet drop
out. At each time step, the sensor sends measurements to the controller with a
certain level of redundancy. Further, by means of an acknowledgement mechanism,
the sensor knows which measurements were received by the controller. Our focus
is on deciding how many redundant copies of a packet should be transmitted at
each sampling time and what benefits can be drawn from this.

Plant Sensor
Channel 1

Channel 2

Channel 3

Network

Controller

Figure 6.1: NCS architecture

The basic intuition behind this technique is that one can use redundancy to
increase the probability of a successful transmission whenever the estimation error
in the controller becomes large. On the other hand, at time instants for which
the control performance is satisfactory, one may send only one packet or not send
data at all, which would save communication resources. This adaptive behavior
is desirable for NCSs because it improves the reliability of transmissions without
relying on error correction schemes that induce delay in the transmissions. Indeed,
if a packet containing some measurement data is dropped at a time instant, it is
generally more important from a control point of view to guarantee that the
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measurements at the next time instant are delivered, rather than to retransmit
the old information that was dropped previously.

For simplicity of presentation, we consider NCSs with full local state mea-
surements and no network delays. However, the results obtained can be readily
extended to the case of partial state measurements and delays in the network as
suggested by Xu in [92]. In the case of partial measurements, it is ideal to use a
Kalman filter collocated with the sensor and then transmit optimal estimates.

In the first part of the chapter we focus our attention on the problem of sta-
bilizing a discrete-time linear time-invariant process with a certainty equivalence
control. For such process it is well know that mean-square instability arises when-
ever the drop probability rises above a certain threshold. Moreover, no matter
how small the drop probability is, some statistical moments of the process state
will always be unbounded. It turns out that redundant transmissions can be used
to stabilize any given statistical moments for any probability of drop. Surpris-
ingly, we show that, by a judicious use of redundant transmissions, this can be
achieved with no significant increase in the average communication rate.

In the second part, motivated by the observation that the redundant channels
are rarely used and yet their availability provides significant performance gains,
we discuss the possibility of having multiple nodes sharing the redundant chan-
nels. This is a natural practice to maximize network efficiency but one must be
aware that transmissions at the different feedback loops become interdependent.
Nevertheless, we provide protocols for which mean-square stability is preserved
for an arbitrary number of nodes sharing the same set of channels.

In the third part, we investigate optimal redundant transmission protocols for
the NCS. In this setting, the controller constructs estimates of the process state
using the measurements transmitted by the sensor. The sensor, in turn, uses a
redundant transmissions policy that minimizes the weighted average cost of the
estimation error in the controller and the average communication rate. First, we
consider the ideal case in which the sensor has enough computational power to
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reconstruct the state estimates available to the controller from the acknowledge-
ment information. Secondly, and motivated by the fact that in some applications
sensors have very limited computational capabilities, we find policies that mini-
mize the same cost but base their decisions solely on the number of consecutive
transmission failures.

6.1 A linear NCS with redundant transmissions

Throughout the chapter we consider a linear time-invariant plant with

x(k + 1) = Ax(k) +Bu(k) + w(k) (6.1)

where x ∈ Rn denotes the state of the process, u ∈ Rn1 the control input, and
w ∈ Rn an n-dimensional zero-mean Gaussian white noise process with positive
definite covariance matrix Σ. The pair (A,B) is assumed to be controllable.

The controller and a sensor that measures the full state x(k) are connected
through a network that drops packets independently of each other, with probabil-
ity p ∈ (0, 1). The state x(k) is assumed to be transmitted with negligible quan-
tization error. In order to “adjust” the probability that the measurement x(k)

reaches the controller, the sensor may transmit multiple copies of this message
through independent channels (see Fig. 6.1). The transmitter is equipped with a
feedback channel that allows it to know which packets are dropped. We denote by
l(k) the number of consecutive transmission failures that occurred immediately
before time k, where a transmission failure is characterized by the failure of all
the attempts to transmit x(k) at time k.

We are interested in designing protocols that determine how many identical
packets to send at time k as a function of x(k) and l(k). We denote by v(k) the
number of redundant packets transmitted at time k. Under our assumption of
independent drops, the probability of a transmission failure at time k is pv(k).
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We adopt a certainty equivalence control law of the form

u(k) = Kx̂(k) (6.2)

where the matrix K is chosen such that A+BK is Schur and x̂(k) is an estimate
of x(k) based on the measurements that successfully reached the controller up to
time k. In particular,

x̂(k) := E
[
x(k)

∣∣x(s), s < k, s ∈ Tsuccess
]

(6.3)

where Tsuccess denotes the set of times at which the sensor succeeded in transmit-
ting the measured state to the controller. This state estimate can be computed
recursively using

x̂(k + 1) =




Ax̂(k) +Bu(k) if k 6∈ Tsuccess

Ax(k) +Bu(k) if k ∈ Tsuccess.
(6.4)

Subtracting (6.1) from (6.4), we conclude that the estimation error e(k) := x̂(k)−
x(k) evolves according to the dynamics:

e(k + 1) =




Ae(k)−w(k) if k 6∈ Tsuccess

−w(k) if k ∈ Tsuccess.
(6.5)

The closed-loop dynamics (6.1)–(6.2) can be expressed in terms of this error using

x(k + 1) = (A+BK)x(k) +BKe(k) + w(k). (6.6)

In the following sections we investigate stability and optimal estimation in
this setting. From (6.6), our certainty equivalence control guarantees a bounded
covariance for x(k) if e(k) has bounded covariance.

6.2 Moment Stabilization Using Redundant Trans-

missions

In this section we investigate the stability properties of redundant transmission
protocols that can be specified by a static law v that maps the number l(k) of
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consecutive transmission failures to the number v(l(k)) of packets to send. For
example, if we use the identity function v(l) = l, then l(k) identical packets will
be sent at time k. The possibility of sending zero packets is not excluded.

Theorem 16 shows that mean-square stability can be achieved for any system
matrix A and any drop probability p < 1 by a suitable choice of the redundant
packet transmission protocol that specifies the function v(l).

Theorem 16. Let the spectral radius of the matrix A be denoted by a. The
covariance of x(k) is bounded when the following limit exists and satisfies

lim
l→∞

a2pv(l) < 1 .

Conversely, the covariance of x(k) is unbounded when liml→∞ a2pv(l) > 1.

Therefore, all that is needed to guarantee stability is to select v(l) sufficiently
large for large values of l:

lim
l→∞

v(l) >
2 log a

− log p
. (6.7)

Proof. We assume that a ≥ 1 since the covariance is always bounded if a < 1. In
view of (6.6) and the fact that A + BK in (6.6) is Schur, it is sufficient to verify
the boundedness of the covariance matrix for e(k). To this purpose, we consider
the infinite Markov chain for l(k), which, under the assumption of independent
drops, has transition probabilities

Pr (l(k + 1) = l(k) + 1 | l(k)) = pl((k)), k ≥ 0

Pr (l(k + 1) = 0 | l(k)) = 1− pv(l(k)), k ≥ 0 .

The stationary probabilities µ(l) for this Markov chain must therefore satisfy

µ(l + 1) = pv(l)µ(l) = p
∑l
m=0 v(m)µ(0), l ≥ 0

∞∑

l=0

µ(l) = 1 ,
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which allows us to conclude that

µ(0) =

(
1 +

∞∑

l=1

p
∑l−1
m=0 v(m)

)−1

and, for l > 1,

µ(l) = p
∑l−1
m=0 v(m)

(
1 +

∞∑

m=1

p
∑m−1
n=0 v(n)

)−1

. (6.8)

Notice that µ(0) is well defined since, by (6.7) and the fact that a ≥ 1, there
exits a constant L > 0 such that v(l) ≥ 1, ∀l ≥ L. Under this condition one can
also verify that the chain is aperiodic and recurrent. Therefore, we can apply [69,
Thm. 14.3.3] to conclude that

lim
k→∞

E [e(k)e(k)′] =
∞∑

l=0

E
[
e(k)e(k)′

∣∣ l(k) = l
]
µ(l) . (6.9)

In view of (6.5), we have that

E
[
e(k)e(k)′

∣∣ l(k)
]

= E
[( l∑

m=0

Amw(k −m)

)
·
(

l∑

m=0

Amw(k −m)

)′]

=
l∑

m=0

AmΣA′m ,

which can be used in (6.9) to obtain

lim
k→∞

E [e(k)e(k)′] =
∞∑

l=0

µ(l)
l∑

m=0

(AmΣA′m) . (6.10)

For any submultiplicative matrix norm ‖ · ‖, we have

‖ lim
k→∞

E [e(k)e(k)′] ‖ ≤ ‖Σ‖
∞∑

l=0

µ(l)
l∑

m=0

(‖Am‖2) .

By the ratio test, this series is convergent if

lim
l→∞

µ(l + 1)

µ(l)

‖Al+1‖2

‖Al‖2
= a2 lim

l→∞
pv(l) < 1 ,
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where the equality comes from (6.8) and the fact that a=limk→∞ ‖Ak‖1/k. This
gives the first part of the theorem. The second part can be deduced by pre- and
post-multiplying (6.10) by the eigenvector corresponding to a and then using the
ratio test to conclude divergence of the resulting series.

For the stability of higher moments, one can obtain conditions analogous to
(6.7) with a similar proof.

From (6.7), we can see that to achieve stability one may require a protocol
that, at times, sends a large number of packets, which seems to require a large
communication rate. To verify that this is not the case, we investigate the expected
communication rate for a given function v(l). We assume that the packet size
is a constant with value 1 and that it is sufficiently large so that the controller
receives x(k) with negligible quantization loss. We define the expected asymptotic
transmission rate as

R̄ := lim
N→∞

1

N

N−1∑

k=0

E[v(l(k))] . (6.11)

Theorem 17. Suppose that a2pM < 1 for some integer M . Then, for every
integer N ≥ 0, there exists a protocol with v(l) ≤M that stabilizes the covariance
of x(k) with an expected transmission rate:

R̄ = O(1/N) , (6.12)

which can be made arbitrarily small by choosing N sufficiently large.

Proof. Consider the protocol

v(l) =

{
0 for l ≤ N

M for l > N .
(6.13)

From Theorem 16, this is a stabilizing protocol. As in the proof of Theorem 16, we
can use (6.8) and the recurrence of the chain to compute the expected asymptotic
transmission rate

R̄ = µ(0)

(
v(0) +

∞∑

l=1

v(l)p
∑l−1
m=0 v(m)

)
.
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Substituting (6.13), we have that

R̄ =
M

N(1− pM) + 1
,

which gives the result in the theorem.

While we can obtain an arbitrarily small communication rate, the larger we
make N the larger the error covariance will be. This relationship between average
transmission rate and control performance is investigated in the following sections.

We note that a strong result as (6.12) may no longer hold when quantization
errors cannot be neglected, because packet sizes could need to increase when many
consecutive failures take place to compensate the quantization errors as x(k) gets
large.

A second factor that may alter our results is the presence of failures in the
acknowledgement mechanism. While there may be many ways to deal with this
issue such as using redundancy in the acknowledgement channel, one can always
adopt the conservative approach of using positive acknowledgements. This ap-
proach preserves stability since it sends necessarily more redundant packets than
in the case of perfect acknowledgement.

6.3 Redundant Protocols with Multiple Nodes

As seen in the previous section, redundant protocols may need to utilize redundant
channels quite rarely. This suggests that some of these channels could be shared
by other feedback loops without compromising performance. In this section we
explore the situation in which multiple processes share the redundant channels.

Consider the case where S feedback loops share the redundant channel. De-
note by N the total number of channels, by p the dropout probability for each
independent channel. For this scenario, we define the following protocol.
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Protocol 1. A node i does not use redundancy as long as its number li(k) of
consecutive drops is not larger than a constant L; when li(k) > L for node i only,
that node uses all the N available channels; if li(k) > L for more than one node,
these nodes share the N channels in an arbitrary way.

This protocol does not require a fair share of the N channels, but only that
the channels are utilized without drops due to collision. This would work either
in a centralized scenario or in a decentralized scenario where transmitters take
advantage of the capture effect [99] so that, even if multiple nodes access the same
channel, one of them is still able to successfully use it.

We are interested in evaluating under which conditions Protocol 1 stabilizes the
estimation error in the mean-square sense. Somewhat surprisingly, we show next
that stability can be achieved independently of the number of processes S in the
network (even for a possibly decentralized protocol). Let Ai be the system matrix
of the i-th process and ai its spectral radius. Then we define a = max1≤i≤S{ai}.

Theorem 18. Suppose that a2pN < 1. Then, for any number of feedback loops
S, there always exists an integer L such that Protocol 1 stabilizes the estimation
error in the mean-square sense.

Proof. Let V (l) := maxj∈S lj. To prove mean-square stability, it suffices to prove
the boundedness of E[W (l(k))] for k ≥ 0, where the Lyapunov function W (l)

is defined as W (l) = a2V (l). To this purpose, we now evaluate ∆W (l0) :=

E[W (l(L))−W (l(0))|l(0) = l0].

When V (l0) < L, we have V (l(L)) < 2L with probability 1. This gives

∆W (l0) ≤ −W (l0) + a4L, for V (l0) < L . (6.14)

When V (l0) ≥ L, we have that V (l(L)) < 2L if at least S successful trans-
missions occur in the first L time steps. Otherwise, V (l(L)) may be as large as
V (l0) + L. Let PL be the maximum probability that less than S nodes transmit
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in L time steps. This probability is maximum when when lj(0) ≥ L for all j ≤ S

and when only one node transmits in all channels. Then, for S < L, we have

PL =
∑

i<S

(
L

i

)
(1− pN)i pN(L−i)

= (L− S + 1)
( L

S − 1

)∫ pN

0

tL−S(1− t)S−1 dt

≤ L− S + 1

L− S
( L

S − 1

)
pN(L−S+1) , (6.15)

where the second equality comes from the cumulative distribution of binomial
random variables and the inequality comes from the bound (1 − t) ≤ 1. With
this, we conclude that

∆W (l0) ≤ PLa
2(V (l0)+L) + 1 · a4L − a2V (l0)

= (a2LPL − 1)W (l0) + a4L (6.16)

for V (l0) ≥ L.

Because the right-hand side of (6.16) dominates the right-hand side of (6.14),
we have that (6.16) holds for all l0. Therefore, by a standard Lyapunov argument,
E[W (l(kL))] is bounded provided that

a2P
1/L
L < 1 . (6.17)

Since the boundedness of E[W (l(kL))] does not depend on the initial condition,
it also implies the boundedness of E[W (l(k))]. Finally, from (6.15), note that

lim
L→∞

P
1
L
L ≤ lim

L→∞

(
L− S + 1

L− S

) 1
L ( L

S − 1

) 1
L
pN(L−S+1)/L

= pN .

Since a2pN < 1, one can always choose L large enough to satisfy (6.17).
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For scenarios in which capacity is degraded by collisions, a stability result will
depend highly on the specifics of the communication system. As in (6.17) in the
proof of Theorem 18, stability will depend on the quantity limL→∞ P

1/L
L , which is

closely related to the notion of error exponent in information theory [24], i.e., the
logarithm of the probability of error in a block of length L.

6.4 Optimal Communication Protocols

In the last two sections, we have seen that it is possible to stabilize one or sev-
eral processes in the mean-square sense, with very few communication resources.
However, this may lead to large error covariances. Our goal now is to determine
an optimal policy for the single node case that decides when to send multiple
copies of the same packet and how many copies to send. This policy should be
optimal in the sense that it achieves an optimal trade off between the conflicting
objectives of keeping small the estimation error e(k) that drives the closed-loop
dynamics (6.6) while achieving this with a minimal amount of communication.

To formulate this problem, we adopt the framework of Markov Decision pro-
cesses on Borel spaces of Section 2.4. The state is the estimation error e ∈ X = Rd

and the control action is the number of redundant packets v ∈ B ⊂ N. We denote
by B(e) of admissible control actions. The probability transition kernel can be
extracted from (6.5) as

P (dy|e, v) = (1− pv)f(y)dy + pvf(y − Ae)dy , (6.18)

where f is the pdf of the normal distribution with zero mean and covariance Σ.

For technical reasons, we restrict the set of admissible control actions B so
that all policies under consideration are stabilizing in a uniform way (as it will be
clear later). In particular,

B(e) :=

{
{0, . . . ,M} if ‖e‖ < L

{M} if ‖e‖ ≥ L ,
(6.19)
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where M denotes the maximum number of redundant packets possible and L > 0

is a constant. This restriction ensures that M packets are sent when ‖e‖ grows as
large as L, but our results allow L to be arbitrarily large.

Our objective is the minimization of the following average cost (AC) criterion

J(π, e0) := Jest(π, e0) + λJcom(π, e0) (6.20)

where

Jest(π, e0) := lim
N→∞

1

N
Eπ
e0

[N−1∑

k=0

e(k)′Qe(k)
]

(6.21)

Jcom(π, e0) := lim
N→∞

1

N
Eπ
e0

[N−1∑

k=0

v(k)
]

(6.22)

where λ is a positive scalar, Q a positive definite matrix and Eπ
e0

denotes the
expectation given a policy π and an initial state e(0) = e0.

The criterion in (6.20) is a weighted sum of two terms: the first term Jest(π, e0)

penalizes a time-averaged expected quadratic estimation error, whereas the second
term Jcom(π, e0) penalizes the average communication rate, measured in terms of
the number of messages sent per unit of time. The constant λ allows one to adjust
the relative weight of the two terms. As λ→ 0, communication is not penalized,
whereas as λ → ∞, communication is heavily penalized. Intermediate values
of λ will yield Pareto-optimal compromise solutions between the two conflicting
criteria.

Our assumption on the set of admissible control actions guarantees that the
limits in the definitions of Jest and Jcom exist. Hence, we can use (6.5) to rewrite
the cost function (6.20) in terms of the one-step cost c as follows

J(π, e) = lim
N→∞

1

N
Eπ
e

N−1∑

k=0

c(e(k),v(k)) (6.23)

where
c(e, v) = e′Qe+ λv . (6.24)
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In the next theorem we apply the results from Section 2.4 to state the existence
of a solution to the AC-optimality problem.

Theorem 19. Suppose that the maximum redundancy degree M in (6.19) is suf-
ficiently large so that

a2pM < 1 . (6.25)

Then:

1. There exist a triple (%∗, φ∗, π∗) satisfying the (ACOE) (2.10).

2. π∗ is AC-optimal and %∗ is the optimal AC-function.

3. The value iteration algorithm of Section 2.4 converges (with rate at least
exponential).

A proof of Theorem 19 is provided in Appendix A.

6.4.1 Suboptimal Protocols

Solving for the optimal policy in Theorem 19 may be computationally intense for
high-dimensional systems. Fortunately, one can exploit the linear structure of the
controlled plant to find suboptimal policies that are computationally tractable.
One approach to construct a reasonable suboptimal policy consists of applying
just one iteration of the policy iteration algorithm (see [35]) initialized with the
policy π0 ≡M . The resulting policy is

π1(e) = arg min
v∈B(e)

{λv + pve′A′HAe} , (6.26)

where the positive definite matrix H satisfies the Lyapunov equation

pMA′HA−H +Q = 0 .

The policy π1 is considerably simpler to compute than π∗ and it offers the addi-
tional benefit of a smaller (memory-wise) representation. Alternatively, one may

105



Chapter 6. Redundant Transmissions over Lossy Networks

construct similar suboptimal policies by searching for a quadratic relative value
function ϕ̄(e) = e′He that minimizes the average cost upper bound %̄:

%̄+ ϕ̄ ≥ min
v∈B(e)

[
c(e, v) +

∫
ϕ̄(y)P (dy|e, v)

]

= min
v∈B(e)

[e′Qe+ λv + pve′A′HAe+ trHΣ] . (6.27)

As the numerical examples in Section 6.6 show, the policy π1 is already quite
close to the optimal and further optimization may be unnecessary.

6.5 A Simplified Optimal Protocol

In many applications sensors have limited computational capabilities that could
prevent the use of elaborate protocols that require the computation of estimation
errors as those considered in Section 6.4. To address this issue, we can design a
simplified protocol that bases its decision rule only on the consecutive number of
failures l(k) that occurred prior to the k-th sampling time, much like the protocols
considered in Section 6.2.

In general, this approach would lead to a partially observable Markov decision
process. Fortunately, due to the special structure of the problem, we show that it
is enough to consider a fully observable process. We consider the two controlled
Markov chains (e(k), l(k)) and l(k) as described in the previous sections. Let
Πl denote the set of stabilizing feedback policies for which v(k) depends only on
{l(s); s ≤ k}. For π ∈ Πl and the chain l(k), define the average cost

Jl(π, l0) = lim
N→∞

1

N
Eπ
l0

∞∑

k=1

c̄(l(k),v(k)) , (6.28)

where the one-step cost is given by

c̄(l, v) = tr(QΣl) + λv , (6.29)

where

Σl :=
l∑

m=0

A′mΣAm . (6.30)
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Theorem 20. For π ∈ Πl,

J(π, e0) = Jl(π, l0), ∀e0, l0 , (6.31)

where J is the original cost in (6.20). Therefore, an AC-optimal policy for the
cost Jl and the chain l(k) is also an AC-optimal policy for the cost J and the chain
(e(k), l(k)) within the set of policies Πl.

Proof. We can rewrite our cost criterion as

J(π, e0) = lim
N→∞

1

N
Eπ
e0

∞∑

k=1

Eπ
e0

[
c(e(k),v(k))

∣∣ l(k)
]
. (6.32)

Once a packet is successfully transmitted, the belief (conditional probability) of
e(k) is solely given by f(e), through (6.18), and it does not depend on any previous
beliefs. Hence, the average cost criterion does not depend on the initial belief.
Thus, without loss of generality, we can calculate the average costs assuming that
l0 = 0 and e0 has distribution f(·). For this initial condition, e(k) is conditionally
distributed as

∑l(k)
m=0 A

m(k)ωm given l(k), where ωm are i.i.d. variables with
density f(·). Then, Eπ

e0

[
c(e(k),v(k))

∣∣ l(k) = l
]

= c̄(l, v) and the claim of the
theorem follows from (6.32) and (6.28).

If we further restrict the set of policies to be such that v = pM for l ≥ T ,
we no longer need to keep track of the number of consecutive drops when this
number exceeds T . We can truncate the Markov chain l(k) by redirecting the
jumps (l = T ) → (l = T + 1) to (l = T ) → (l = T ). Thus, we have moved from
the infinite dimensional problem in Section 6.4 to a finite dimensional problem.
Using the per-stage cost c̄ and the transition probabilities for l that we described
in Section 6.2, one can calculate AC-optimal policies that depend on l only. This
could be done either via dynamic programming or via direct optimization, since
the average costs can be directly calculated using the stationary distribution as
in Section 6.2. Interestingly, once c̄ is known, the complexity of solving for the
optimal protocol does not depend on the dimension n of the dynamical system,
but only on T and on the size M + 1 of the set of control actions.
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In general, the designer can select the constants M and T to be small. This
is so because the probability of failure pM becomes indistinguishably small for M
larger than some small constant, typically 3. Likewise, the probability of reaching
a state l = T also decreases exponentially with T . An important consequence of
the set of control actions being small is that one can solve for the optimal protocol
offline and then use small look-up tables. The same observations also apply to
the optimal protocols in the previous section.

Remark 5. When solving an optimal control problem with quadratic costs, the
separation principle does not hold in the setting of Section 6.4 since the communi-
cation protocols may depend on x(k). On the other hand, the separation principle
does hold in the context of the simplified protocols of this section. To see why, note
that, for each fixed simplified protocol, we have a Markov Jump Linear System,
for which the separation principle is known to hold [31]. As it turns out that the
optimal control and optimal estimator do not depend on the fixed protocol, the
separation principle holds for the general problem.

6.6 Numerical Examples

6.7 Example 1 – A scalar process

The results in the previous sections were applied to a scalar example with A = 2,
Σ = 3, Q = 1, p = 0.15 and L = 10. By varying λ from 0.001 to 200, we
constructed the Pareto frontiers shown in Fig. 6.2. Some important observations
can be deduced from this figure:

1. With protocols where v ∈ {1, 2}, we are able to decrease the estimation cost
by 30% while increasing the communication cost by only 6%.

2. The simplified optimal policy discussed in Section 6.5 produces protocols
that can be quite close to the Pareto-optimal boundary.

108



Chapter 6. Redundant Transmissions over Lossy Networks

1 1.5 2 2.5 3

3

3.5

4

4.5

5

5.5

6

6.5

Communication Cost

E
s
ti
m

a
ti
o
n
 C

o
s
t

Figure 6.2: Pareto Frontiers.
Optimal policy with v ∈ {1, 2} (solid); optimal policy with v ∈ {1, 2, 3} (dashed);
optimal policy with v ∈ {0, 1, 2} (dash-dotted); simplified optimal policy with
v ∈ {1, 2, 3}, l < T = 5, and v = 3 for l ≥ T = 5 (cross).
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3. Increasing the maximum number of redundant packets beyond 2 hardly
improves the Pareto-optimal boundary.

4. Most simplified optimal policies are nontrivial in the sense that their redun-
dancy degree is not constant (leading to non-integer communication costs).

5. If we were to allow no transmissions at some time instants (i.e., v(k) ≥ 0

instead of v(k) ≥ 1) then one could further improve the optimal Pareto-
optimal boundary (dash-dotted line in Fig. 6.2).

A phenomenon that commonly arises in multi-objective MDPs is that points on
the Pareto frontier do not always correspond to deterministic policies. This is the
case for the Pareto frontier of the simplified protocol, where only the points marked
with a cross correspond to deterministic policies and the lines linking those points
correspond to randomized policies that can be derived from the deterministic ones
as explained in Section 2.4.1.

Figure 6.3 illustrates the fact that the use of optimal policies becomes more
advantageous as the drop out probability p is increased. As p increases, the
performance of the simplified protocols are worsened significantly with respect to
the optimal protocols. On the other hand, the performances of protocols with
v ∈ {1, 2} and v ∈ {1, 2, 3} remain close to each other for the range of p shown
in the figure. Interestingly, the difference between optimal costs for the optimal
policy with v ∈ {0, 1, 2} and that with v ∈ {1, 2} remains constant with p.

6.8 Example 2 – Two dimensional process

For the following analysis, we have considered a two dimensional example with
A = [1 1; 0 1], Σ = [0.75 0; 0 0.75], Q = [1 0; 0 1], p = 0.15 and L = 10.
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Figure 6.3: Optimal costs as a function of the drop probability.
Optimal policy with v ∈ {1, 2} (solid); optimal policy with v ∈ {1, 2, 3} (dashed);
optimal policy with v ∈ {0, 1, 2} (dash-dotted); simplified optimal policy with
v ∈ {1, 2, 3}, l < T = 5, and v = 3 for l ≥ T = 5 (cross); policy v(k) ≡ 1 (o).
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6.8.1 Single node

By varying λ from 10−5 to 10, we constructed the Pareto frontiers shown in Fig.
6.6, where policies are restricted to the different action sets v ∈ {1, 2}, v ∈ {1, 2, 3}
and v ∈ {0, 1, 2}. Similar conclusions as in the previous example can be drawn.
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Figure 6.4: Pareto Frontiers.
Optimal policy with v ∈ {1, 2} (solid); optimal policy with v ∈ {1, 2, 3} (dashed);
optimal policy with v ∈ {0, 1, 2} (dash-dotted); simplified optimal policy with
v ∈ {1, 2, 3}, l < T = 5, and v = 3 for l ≥ T = 5 (cross).

Suboptimal approaches have been considered in Fig. 6.5. To show the perfor-
mance improvement that arises from judiciously sending redundant information,
we considered also the baseline policy that always sends one packet per time step.
Some observations from this figure are:

1. The suboptimal policy π1 in (6.26) gives a performance remarkably close to
the Pareto frontier and significantly better than the simplified protocols.

2. Using the trivial policy v(k) = 1, ∀k, leads to less communication (x-axis)
than the policies that use v ∈ {1, 2} and v ∈ {1, 2, 3}, but this is at the
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expense of a significantly larger estimation error (y-axis). In fact, based on
the results of Section 6.2, we know that for unstable systems and large drop
probabilities, v(k) ≡ 1 can lead to instability.

3. The steep slope of the Pareto frontier at communication cost 1 indicates
that a large percentual decrease in estimation cost can be obtained with a
small percentual increase in communication cost.
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Figure 6.5: Optimal vs. suboptimal policies.
Optimal policy with v ∈ {1, 2, 3} (dashed); simplified optimal policy with v ∈
{1, 2, 3}, l < T = 5, and v = 3 for l ≥ T = 5 (cross); suboptimal policy π1 with
v ∈ {1, 2, 3} (solid); policy v(k) = 1 ∀k (square); TCP with no delay (circle);
TCP with delayed retransmission (diamond).
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6.8.2 Redundant Transmissions vs. Retransmissions

The motivation for using redundant transmissions as opposed to retransmissions
(such as in TCP) is that NCSs performance may suffer due to the delay accumu-
lated in the transmission, error detection, acknowledgements and retransmission.

To provide some intuition on how the protocols described here compare with
TCP we consider two idealized TCP-like protocols. In the first protocol, we con-
sider a TCP-like scheme in which it is always possible to perform one transmission
of x(k) and, if necessary, at most one retransmission before the sampling time k+1.
At time k+1, the measurement x(k+1) is available at the sensor for transmission
and the old measurement x(k) is discarded (regardless of whether it was success-
fully transmitted). In the second scheme, a retransmission of x(k) is only received
at time k + 1 so it cannot be used until time k + 2. Hence, the retransmitted
message is only used if the message containing x(k + 1) is dropped. We assume
that original and retransmitted packets are dropped with i.i.d. probabilities with
the same value as in the redundant channels above.

The results are shown in Fig. 6.5. The delay free TCP scheme outperforms
the redundant transmission protocols for a large region of cost combinations. On
the other hand, a one-time-step delay is already enough to have the TCP scheme
outperformed by the redundant protocols. In practice, many things can go wrong
with TCP such as random delays and correlation between drops, which in our
framework would imply a higher probability that the retransmitted packets are
not used (dropped). Irrespectively of these implementation issues, redundant
protocols offer the advantage of flexibility in the choice of different estimation and
communication costs combinations by selecting different operating points within
the Pareto boundary.

6.8.3 Multiple nodes

To illustrate the possibility of sharing redundant channels among multiple nodes,
we consider an example with two nodes and three channels. Each node has access
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to its own channel and shares a redundant channel with the other node. Rather
than utilizing Protocol 1, that was defined mainly to prove the scalability results
in Section 6.3 and may not be very practical, we have both nodes utilizing the
single-node simplified optimal protocol derived in the previous example. The
dynamics for each node is also the same as in the previous example. Two possible
collision resolution schemes are considered. In Scheme 1, if a collision happens on
the redundant channel, both packets are dropped on that channel. In Scheme 2,
one of the nodes is granted the use of the redundant channel with probability 1/2

despite of collisions. The performance results for these schemes are shown in Fig.
6.6. For lower average communication costs (below 1.13), these schemes perform
close to the single-node case. Whereas Scheme 2 still provides improvement in
the estimation cost as the communication cost grows, Scheme 1 has its estimation
error performance degraded when the nodes access the redundant channel more
than 13% of the time.

6.9 A Note on Dynamic Stabilization and Output

Feedback

We consider now the output feedback case

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) + r(k) , (6.33)

where y(k) is the output measured by the sensor and r(k) is the measurement
noise. We assume that (A,B) is controllable and (A,C) observable. Given a
controller G(z) that stabilizes the system with perfect communication, we want
to construct a stabilizing controller for the system with drops that produces the
same output as G(z) when there are no drops. To this purpose, we can use the
Youla parametrization to rewrite the control input for the system without drops
as

ū(k) = Kx̄(k) + F (q)ē(k) , (6.34)
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Figure 6.6: Performance in the two-node case.
Simplified policy for Scheme 1 with v ∈ {1, 2} and T = 5 (dashed); simplified
policy for Scheme 2 with v ∈ {1, 2} and T = 5 (dash-dot). Simplified optimal
policy for the single-node case with v ∈ {1, 2} and T = 5 (cross).
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where K is such that A+BK is Schur, F (q) is some stable transfer function, x̄(k)

is a state estimate satisfying

x̄(k + 1) = (A− LC)x̄(k) + Ly(k) +Bu(k) ,

for some stable observer gain L, and ē(k) = x(k) − x̄(k) is the estimation error
and satisfies

ē(k + 1) = (A− LC)ē(k) + w(k)− Lr(k) .

For any stabilizing controller G(z), there exists a corresponding stable transfer
function F (q) such that (6.34) is a realization of such controller. This suggests
that a simple way of extending G(z) to the networked control system is to have
the controller to keep estimates of x̄(k) and ē(k).

There are two major approaches to generate estimates of x in the networked
case. In the first approach, the sensor constructs and transmits estimates of x(k).
In the second approach, the sensor sends all the available measurements that were
not yet received by the controller and estimates are constructed at the controller.
The first approach is more computationally intensive for the sensor, but, depend-
ing on the dimensions of x and y and on the probability of drops, it may use less
memory and communication resources. If the likelihood of consecutive drops is
low and the dimension of x is large compared to y, the second approach is prefer-
able in general. If we adopt the first approach, we need that both x̄(k) and ē(k)

be transmitted in order to implement our control (6.34). With either approach,
the controller can construct the estimate (x̂(k), ê(k)) given by

x̂(k + 1) =




Ax̂(k) + LCê(k) +Bu(k) if k 6∈ Tsuccess

Ax̄(k) + LCē(k) +Bu(k) if k ∈ Tsuccess

and

ê(k + 1) =





(A− LC)ê(k) if k 6∈ Tsuccess

(A− LC)ē(k) if k ∈ Tsuccess.
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It is now possible to define a control input for the networked control system that
is compatible with the controller G(z):

û(k) = Kx̂(k) + F (q)ê(k) .

The error ũ := ū− û in the control input is then given by

ũ(k) = Kx̃(k) + F (q)ẽ(k) ,

where x̃(k) := x̄(k)− x̂(k) and ẽ(k) := ē(k)− ê(k) satisfy
[

x̃(k + 1)

ẽ(k + 1)

]
=

[
A LC

0 A− LC

][
x̃(k)

ẽ(k)

]
+

[
I L

0 −L

][
w(k)

r(k)

]
(6.35)

if k /∈ Tsuccess, and
[

x̃(k + 1)

ẽ(k + 1)

]
=

[
I L

0 −L

][
w(k)

r(k)

]

if k ∈ Tsuccess. We can apply the results in Section 6.2 to conclude the existence
of protocols that provide a bounded covariance for [x̃(k) ẽ(k)]′ when

pMρ

([
A LC

0 A− LC

])
= pMρ(A) < 1 ,

whereM is the maximum number of available channels and ρ(·) denotes the spec-
tral radius of a matrix. Since ū is stabilizing, û guarantees a bounded covariance
for x provided that ũ has bounded covariance. On the other hand, since F (q)

is stable, the covariance of ũ is bounded if [x̃(k) ẽ(k)]′ has bounded covariance.
Therefore, the same stability condition as in the state feedback case is recovered.
Moreover, by making the error covariance of [x̃(k) ẽ(k)]′ small, we bring the
system performance closer to that provided by the control G(z).

6.10 Comments and Open Problems

We introduced new communication protocols for networked control systems that
adjust the probability of successful communication by the transmission of redun-

118



Chapter 6. Redundant Transmissions over Lossy Networks

dant packets. These results can be readily extended to the case of partial state
measurements and delays in the network by following the procedure in [92].

Our results suggest that redundant channels may be efficiently shared among
multiple processes. In addition, the proposed technique has a diminishing returns
property in the sense that little additional benefits are obtained by increasing
the number of redundant channels beyond two or three. This implies that the
implementation of the diversity schemes will not demand an extremely expensive
infra-structure.

As future work, it is important to address the case when the drops for different
packets are not independent of each other. This would be important to study
communication faults due to collisions when this type of redundancy strategy is
simultaneously employed by different nodes.

One should also consider the case in which nodes do not share the same in-
formation on what was broadcasted to the network, e.g., acknowledgements are
not perfect. The development of new acknowledgement mechanisms would be a
valuable approach in this case. In particular, there are cases where nodes can
efficiently detect the occurrence of drops through the plant (as opposed to an
acknowledgement signal in the network) as described in [29].
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Chapter 7

A Framework for General Capacity
Scheduling

Besides diversity, one can also adjust capacity by varying the transmit power
or the coding scheme, an example of which would be changing the quantization
coarseness. Within diversity techniques, one could also adjust the capacity of
available channels. Our next goal is to propose a framework to design general
capacity scheduling protocols.

Varying the transmit power gives a somewhat simple variation of the results
of the previous chapter. Indeed, the transmit power controls the bit error rate,
which in turn controls the drop probability. To handle quantization, however, we
need to consider more general channels than erasure channels. To this purpose,
we consider the following control system:

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) + b(k)ω(k) + v(k) ,

where x ∈ Rn is the state, y ∈ Rny is the output received by the controller,
u ∈ Rnu and b ∈ R are control inputs, w ∈ Rn is the process noise, v ∈ Rny is the
measurement noise and ω ∈ Rny is the noise resulting from the network transmis-
sion. A,B and C are the system matrices with the appropriate dimensions.

In this formulation, we can regard the probability density of b(k)ω(k) as being
controlled by means of varying the transmit power, the quantization or coding
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scheme, or the number of repeated packets. While it may be true that controlling
the noise amplitude in a multiplicative fashion is not possible depending of the way
capacity is adjusted, this is a reasonable approximation for our design purposes.
This model is general enough to approximate most ways of controlling capacity.
For the erasure channels of the previous sections, for example, a drop would
correspond to the event of the variance of ω(k) being very large.

This framework may also incorporate different channel models. For example, a
typical channel model is to consider two-state Markov chain: the noise covariance
of ω(k) is small in one state and large in the other.

A more precise model would consist of ω(k) being a vector with different noise
models that are selected by the control b(k). The design principles in this chapter
also apply to this type of model.

In a Markov Decision Process framework, we can assign different costs to b(k)

depending on the method used to control capacity. In addition, depending on the
encoding being used, it might make more sense to consider that the signal to noise
ratio is being controlled instead of the absolute noise. This would be the case for
example if logarithmic quantization is being used. To cope with this case, we can
make the communication cost depend on the error covariance P of the estimator.

Another important variation that can be captured by this model is the case
of estimation at the sensor. For all practical purposes, we can set C to be the
identity and to incorporate the estimation error in v(k).

7.1 Protocol Design

We assume that the controller constructs estimates of the state x(k) using an
observer with gain L(k). Denoting by P the observer’s error covariance, we have
the following recursion:

P(k + 1) = (A− LC)P(k)(A− LC)′ + L(bR +R0)L′ + Σ ,
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where R, R0 and Σ denote the covariance matrices of ω, v and w, respectively.
Initially, to keep our exposition simple, we assume that the covariance R is known
and time-invariant.

We adopt once more the framework of average cost minimization for Markov
decision processes. Define the one-step cost

c(P, b) = trQP + λφ(b) ,

where Q is some positive definite matrix, λ > 0 is a weight and φ(b) is the com-
munication cost associated with the control b, which will depend on the method
used to control capacity.

The corresponding ACOE with relative value function V and cost % is given
by

%+ V (P ) = min
b,L
{c(P, b) + V ((A− LC)P (A− LC)′ + L(bR +R0)L′ + Σ)} .

Since solving for optimal controls for this type of system is computationally
hard, we try to explore the linearity of the system to design our protocols. A
possible direction is to find the value function of the form V (P ) = trHP , with H
positive definite, that minimizes a bound on the average cost. To this purpose,
we can write the ACOI:

%+ trHP ≥ min
b,L
{c(P, b) + trH((A− LC)P (A− LC)′ + L(bR +R0)L′ + Σ)} .

(7.1)

The optimal L for this value function is given by the Kalman gain L =

APC ′(CPC ′ + bR +R0)−1. Replacing the optimal L, we obtain

%+trHP ≥ min
b

{
c(P, b) + trH(APA′ − APC ′(CPC ′ + bR +R0)−1CPA′ + Σ)

}
.

We want to select H to minimize the bound %. We can rewrite this problem
as the tri-level optimization problem:

min
H≥0

max
P≥0

min
b

{
c(P, b) + trH(APA′ − P − APC ′(CPC ′ + bR +R0)−1CPA′ + Σ)

}
.
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Using the Schur complement, we can rewrite this problem as

min
H≥0

max
P≥0

min
b

max
K
{c(P, b) + trHK)}

subject to
[
APA′ − P + Σ−K APC ′

CPA′ CPC ′ + bR +R0

]
≥ 0 .

In general, multilevel optimization is a hard problem. We relax this problem
by changing the order of optimization:

min
b

min
H≥0

max
P≥0

max
K
{tr(HK +QP ) + λφ(b)}

subject to
[
APA′ − P + Σ−K APC ′

CPA′ CPC ′ + bR +R0

]
≥ 0 . (7.2)

If we fix b, we can regard the remaining optimization problem as the first step in
a policy iteration algorithm. Hence, this optimization problem can be interpreted
as finding the constant policy that minimizes the cost obtained in the next step
of policy iteration.

Provided that φ(b) is convex, the advantage of the above problem is that it is
jointly convex in b and H and jointly concave (linear) in P and K. Therefore, this
is a minimax convex-concave problem that can be solved efficiently using convex
programming techniques. However, we are mainly interested in the case the set
of admissible actions b is discrete. To deal with this case, we use the following
proposition.

Proposition 10. Suppose that the pair (A,C) is detectable and that Σ and R0

are positive definite. Let b∗, P ∗ and H∗ denote the solutions to problem (7.2).
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Then, b∗ and P ∗ are also solutions to the problem

min
b

max
P≥0
{trQP + λφ(b)}

subject to
[
APA′ − P + Σ APC ′

CPA′ CPC ′ + bR +R0

]
≥ 0 ,

and H∗ satisfies the Lyapunov equation

(A− L∗C)′H∗(A− L∗C)−H∗ +Q = 0 , (7.3)

where L∗ = AP ∗C ′(CP ∗C ′ + b∗R +R0)−1.

Proof. Since (A,C) is detectable and Σ, R0 > 0, we have that the constraint in
(7.2) for P is strictly feasible and the constraint set is bounded. Therefore, we
can use the minimax theorem to rewrite (7.2) as

min
b

max
P≥0

max
K

min
H≥0
{tr(HK +QP ) + λφ(b)}

subject to
[
APA′ − P + Σ−K APC ′

CPA′ CPC ′ + bR +R0

]
≥ 0 .

From this new form we can see that the optimal solution must have K posi-
tive semidefinite, otherwise infH trKH = −∞. When K ≥ 0, infH trKH = 0.
Therefore, we can simplify this problem to

min
b

max
P≥0
{trQP + λφ(b)}

subject to
[
APA′ − P + Σ APC ′

CPA′ CPC ′ + bR +R0

]
≥ 0 .

To calculate H∗, we use the Karush-Kuhn-Tucker conditions for the original cost

trH(APA′ − P − APC ′(CPC ′ + bR +R0)−1CPA′ + Σ +KP ) + λφ(b) .
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Note first that P ∗ must be positive definite since Σ > 0. Therefore, the Karush-
Kuhn-Tucker condition for the derivative with respect to P gives

trH(A∆PA
′ −∆P −A∆P (L∗C)′ + L∗C∆P (L∗C)′ − L∗C∆PA

′ +K) = 0, ∀∆P ,

(7.4)
where ∆P denotes first variations in P . We obtain (7.3) by rearranging the terms
and using the fact that (7.4) must hold for all ∆P .

One should note that the use of the linear value function trHP implies a
threshold type policy when c(P, b) is concave in b. Indeed, we have that the
minimization in (7.1) is concave in b, which implies that the optimal action is
either the minimum or the maximum b available. On one side, this provides a
simple implementation rule. On the other side, not using the intermediary values
of b may give worse suboptimal protocols.

Next, we want to consider a noise model where, at every time instant, ω(k)

has covariance Ri with probability pi, i = 1, 2. The ACOE now becomes

%+ trHP ≤ min
b,Li

{
c(P, b) + tr

∑

i=1,2

piH((A− LiC)P (A− LiC)′

+ Li(bRi +R0)Li
′ + Σ)

}
.

We can repeat the design procedure above to obtain a relative value function
V = trH∗P , where H∗ satisfies

∑

i=1,2

pi(A− L∗iC)′H∗(A− L∗iC)−H∗ +Q = 0 , (7.5)

where L∗i = AP ∗C ′(CP ∗C ′ + b∗Ri +R0)−1, i = 1, 2 and b∗, P ∗ solve

min
b

max
P≥0
{trQP + λφ(b)}

subject to


APA′ − P + Σ

√
p1APC

′ √
p2APC

′

√
p1CPA

′ CPC ′ + bR1 +R0 0
√
p2CPA

′ 0 CPC ′ + bR2 +R0


 ≥ 0 .
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7.2 Numerical Examples

We tested the proposed protocol design with a scalar example where A = 2, C = 1,
Σ = 3, Q = 1, p1 = 0.85, p2 = 0.15, R1 = 0.1, R2 = 3, R0 = 0.1. The control
actions were on the set {10−2, 10−1.4, . . . , 103.4, 104} and the communication cost
was φ(b) = − log b+ 4.
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Figure 7.1: Pareto set for capacity scheduling.
Pareto frontier (solid); policy obtained from Proposition 10 (dashed).

The Pareto frontier in Figure 7.1 was obtained by varying λ from 0.001 to
1000. This figure shows that communication costs can be decreased significantly
without much performance degradation in the estimation error. From this figure
and Figure 7.2, we see that the policy given by Proposition 10 performs close to
the optimal and better than the greedy policy (which corresponds to using a value
function trQP ). It is also important to notice that the upper bound % predicted
by Proposition 10 is quite conservative, being even worse than the greedy policy.

We consider next a two-dimensional example (for which the computation of
optimal policies becomes harder) where A = [1 1; 0 1], C = [1 0], Σ = [3 0; 0 3],
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Figure 7.2: Cost obtained by capacity scheduling for different weights.
Optimal policy (solid); policy obtained from Proposition 10 (dashed); cost pre-
dicted by Proposition 10 (*); greedy policy (dot-dashed).

Q = [1 0; 0 1], p1 = 0.85, p2 = 0.15, R1 = 0.1, R2 = 3, R0 = 0.1. The control
actions were on the set {10−2, 10−1.4, . . . , 103.4, 104} and the communication cost
was φ(b) = − log b+ 4. As in the previous example, Figure 7.3 shows that a good
tradeoff between communication and estimation cost can be achieved.

In this example, the policy given by Proposition 10 outperforms the greedy
policy by a higher margin than in the past example, as shown by Figure 7.4 .

7.3 Comments and Open Problems

New directions on the material presented in this chapter include improving the
proposed suboptimal policy or giving guarantees of how close to the optimal it
performs. An interesting possibility that also explores the linearity of the plant is
to consider piecewise linear value functions.
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Figure 7.3: Pareto set for capacity scheduling in the 2-D example.
Policy obtained from Proposition 10 (dashed).

As in our redundant transmission protocols, calculating the error covariance
may be a computational burden to sensors. Hence, it would be valuable to develop
simpler protocols. Unfortunately, the information to be considered is not as simple
as counting the number of consecutive drops. A simple possibility would be given
by protocols that depend on some time average of the noise power.
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Figure 7.4: Cost obtained by capacity scheduling for different weights in the 2-D
example.
Policy obtained from Proposition 10 (dashed); cost predicted by Proposition 10
(*); greedy policy (dot-dashed).
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Appendix A

Proof of Theorem 19

Our proof is based on Theorem 9 and it consists of finding a Lyapunov function
V that satisfies a Foster-Lyapunov condition uniformly on the set of policies. The
numbers (1) and (2) of our theorem follow directly from Theorem 9. Number (3)
follows from Theorem 10 under the same assumptions.

Since B is equipped with the discrete topology, Assumption 4 is trivially
verified. Next, we show that Assumption 3 also holds. Define the function
s(e, v) := 1 − pv and the measure ν(C) =

∫
C
f(y)dy for C ⊂ Rn measurable.

Then, we have from (6.18) that

P (C|e, v) ≥ ν(C)s(e, v) , (A.1)

which satisfies Assumption 3 (iii). Because of our restriction of the set of admis-
sible actions in (6.19), we have that

∫
s(e, π(e))ν(de) > 0 for all π ∈ Π0. This

satisfies Assumption3 (v).

Let BL denote the open ball with radius L centered at the origin in Rn, let
1BL be its indicator function and ν0 := ν(BL). For some positive definite matrix
K ∈Mn×n, let α be a constant such that ν0 + pM(1− ν0) < α < 1 and such that
there exists H ∈Mn×n, the unique positive definite solution of

α−1pMA′HA−H = −K . (A.2)

The existence of such α is guaranteed by our assumption that a2pM < 1, since
this implies that α−1/2pM/2A is Schur for α close enough to 1.

We define the Lyapunov function

V (e) = e′He+ a01BL(e) + b0 , (A.3)
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where a0 is a constant to be determined and b0 is set to

b0 =
a0(α− ν0)− d1

1− α (A.4)

and the constant d1 is defined as

d1 :=
α

pM
max
‖e‖≤L

e′((1− pM)H −K)e+ trHΣ . (A.5)

We assume that a0 > 0 is large enough so that b0 > 0, which implies V > b0 > 0.
By our choice of V , there exists a positive constant δ such that supB(e) c(e, v) <
δV (e), which verifies Assumption 3 (i).

Assumption 3 (ii), namely,
∫
V dν < ∞, is also satisfied since the Gaussian

distribution has finite second moments.

The last assumption to verify is Assumption 3 (iv), which in our formalism
can be written as

∫
V (y)P (dy|e, π(e)) ≤ αV (e) + s(e, π(e))

∫
V (y)ν(dy) (A.6)

for all π ∈ Π0. This condition can be understood as a Lyapunov-Foster condition
that is satisfied uniformly on the set of policies. To verify that (A.6) indeed holds,
we define

∆V (e) : =

∫
V (y)P (dy|e, π))− s(e, π)

∫
V (y)ν(dy)

=

∫
pπV (y)f(y − Ae)dy ≤ pπe′A′HAe+ pπ trHΣ + pπa0ν0 + pπb0

= pπ−Mαe′(H −K)e+ pπ trHΣ + pπa0ν0 + pπb0 ,

where the last equality comes from (A.2) and the dependence of π on e was omitted
to simplify the notation. From this it follows that

∆V − αV ≤ α

pM
e′
(
(pπ − pM)H −K

)
e+

pπ trHΣ + pπa0ν0 − αa01BL(e) + (pπ − α)b0 . (A.7)

In the region ‖e‖ < L, we can upper bound the right-hand side of (A.7) by using
the fact that π(e) ≥ 0:

∆V − αV ≤ α

pM
e′
(
(1− pM)H −K

)
e+ trHΣ + a0(ν0 − α) + (1− α)b0 ≤ 0 ,
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where the last inequality is obtained from (A.4) and (A.5).

In the region ‖e‖ ≥ L, we have that π(e) = M , which implies that the right-
hand side of (A.7) decreases strictly with ‖e‖ in this region, except for ‖e‖ = L,
where it jumps. Thus, it only remains to investigate if (A.6) is satisfied at ‖e‖ = L.
For ‖e‖ = L, the following upper bound can be obtained from (A.7):

∆V − αV ≤ −αp−Mλmin(K)L2 + pM trHΣ + a0p
Mν0 + (pM − α)b0 .

Replacing (A.4) we obtain

∆V − αV ≤ −αp−Mλmin(K)L2 + pM trHΣ+

a0α(ν0 + pM(1− ν0)− α) + (α− pM)d1

1− α .

Since α was chosen to satisfy (ν0 + pM(1 − ν0) − α) < 0, one can make a0 large
enough so that ∆V ≤ αV for ‖e‖ ≤ L. With this we have verified (A.6).
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