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Abstract— The purpose of this contribution is twofold: 1)  converges exponentially fast to the steady-state digioibu
to present for the first time a Lyapunov function that proves  |nformation about the speed of convergence is important to
exponential ergodicity of a process studied by the authorsni[1], (1) estimate how long one needs to wait to be sufficiently

where the problem of controlling the probability density of a TR .
swarm of robotic agents was solved; 2) to introduce alongsel close to the steady-state distribution and (2) design =&

the method used to construct this Lyapunov function, which With fast convergence rates. This second point was exploite
is of interest in its own since it may be applicable to a wide in Section IlI-B.
class of piecewise-deterministc Markov processes. Our nieid The results in this paper have the limitation that, even
searches for the Lyapunov function that maximizes a measure for a process for which the law of the process converges
of the rate of convergence that appears in the theory of large - VR .
deviations. Analytical solutions are often possible as skm by exponentially tF’ the steady-stgtg d's_mbu.t'on' it coutghpen
examples. that the solution to our optimization is not a Lyapunov
p
function. In practice, this means that one needs to verify
. INTRODUCTION if the function obtained here is indeed a Lyapunov function,

Markov processes with jumps, such as piecewisé’thCh is often a simple procedure.

deterministic Markov processes, offer a significant chmagjée II. PRELIMINARIES
to the construction of stability proofs due to the nonloca}k Piecewise-Deterministic Markov Processes
interactions in the state space that are introduced by jumps o ) )
Lyapunov stability criteria for such processes involve/su Our paper follows closely the definition of piecewise-
partial integro-differential inequalities, which is tgpily determmls_tlc Markov Proc_esses (PDP) introduced in [4] and
difficult to do numerically. This paper shows that LyapunowXtended in [5]. We consider the PEE\%) = (x(t), v(1))
functions for such processes can be obtained from tf¥0lvingony = X' xV, wherex C R andV is a compact
minimization of a convex functional that arises in the tiyeor S€t. We denote by3 the corresponding Boret-field and
of large deviations [2], [3]. In particular, we show that thetY B()) the set of bounded-measurable functions. For
Lyapunov function that maximizes a specific measure direvity, we define the PDP in terms of its extended generator
convergence often used in large deviations theory satiafied4l: [5]:
nonlinear integral equation without differential termstire Lh=f-Vh+AQh —Ah
unknown. This equation is considerably simpler than irdegr tq, 5, < D(L) [for the sake of a simpler exposition, we
differential inequalities and we present cases in whicfait ¢ j,diciously omit the fact that the extended generator takes
be solved in closed form. also path-differentiable functions in its domain; we rekpar
Our method was developed in the attempt to find Lyapunayowever, that our derivations are valid on the full domain of
functions for a process studied by the authors in [1]. Thighe generator]. Her& denotes the gradient with respectuto
process consists of a hybrid Markov Chain Monte Carlg . ) _, x s the vector field that describes the deterministic
(MCMC) approach in which a vehicle is induced to perfornyjow, the jump rate A : Y — R* defines the infinitesimal
a random walk with some prespecified stationary distribiutio propability Adt of a jump occurring in the interva, dt],
This process is inspired by bacterial chemotaxis and we refgnq thgump kernelQ is such thatQh(y) := [ h(€)Q(y, de)
to it as Optimotaxis. Stability was proven in the mentionegyy 7, ¢ B(Y), where, given that a jump occurs at=
previous work without the use of Lyapunov techniques. QA :=Pr(é(r) e A| & (1) =¢) for A€ B.
The key advantage in using the Lyapunov-based tech- This PDP model is captured by several stochastic hybrid
niques to prove stability of a Markov process is that ongystem models that appeared in the literature, includiig [6

obtains information about the rate of convergence of thg]. Fig. 1 depicts a schematic representation of our PDP.
process to the steady-state. In particular, the method used

in this paper to construct Lyapunov functions provides con- Alx, v)
ditions under which the law of the process in Optimotaxis '
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Let m denote the Lebesgue measurelin We assumé&’  positionz. The objective is to make the probability density
to be a compact subset of a locally compact separable metdt the vehicles position to converge to the output function
space equipped with a Borel probability measureWe ¢(«) and then have an external observer that can measure the
denote byL!(m x v) the space of real functions integrablevehicles position to collect information abag(t:), much like
with respect tom x v. As in [8], we assume the existencein MCMC methods. Speed of convergence is particularly
of a kernel@* such that critical for this application, since one needs to decide nhe

y a good estimate af(x) has been obtained.

m X v(d§1)Q(E1, dE2) = m x v(dE2)dvQ™ (€2, d&y) - The jump intensity is chosen such thetz,v) =7 — v -

In this case, the adjoint* of £ restricted toL'(m x v) is  VIng(x), where the constanj is a design parameter that
given by must be chosen such thats nonnegative. The jump kernel
L'p=—=V-fp+Q (\p)— Ip is such thatr does not change andhas a jump distribution

that is uniform onV. More precisely,
for p e D(L*) C L' (m x v).

B. Exponential Ergodicity Qh(z,v) :/Vh(IaU)V(dv)

Next, we briefly recall the drift condition for exponentiali

. . or h € B(Y). We have shown that a process with these
ergodicity of Markov process. The reader is referred to [9 haracteris(tic)s has indeed an invariant (Fj)eng(ty) [1]. As
for a more complete definition of the main concepts. For g )

Markov processb(t), let P4(y, A) — Pr((t) € A[®(0) iscussed in [1], this controller can be implemented using

y), for A € B, and let£ denote its extended generator. Just the information from the outpuf(z).

We say that®(¢) is V-exponentially ergodid there exists Finding !_ya_punov fur_lct|on_s for this process IS difficult
. . " due to the intricate relationship between the continucai st
V :Y — [1,00), an invariant probability measure, and

constantsBy. by > 0 such that 2 and the discrete mode To illustrate this, we consider the
’ Metropolis-Hastings algorithm, which is a classic MCMC
Pt (y,-) — ||y < BoV(y)e ™, Vyed , algorithm. Optimotaxis and Metropolis-Hastings are samil
in the sense that the probabilities to reject a point in
Metropolis-Hastings and the probability to reject a vetpei
in Optimotaxis are essentially the same. The main diffezenc
is that, because in Metropolis-Hastings the state reptesen
a variable in a computer, the controller can look at a point
LV < —cWV +blo . and reject it without moving the state to that point, which
in turn is not possible if the state represents the position
We note that for the examples considered in this paper, &f a physical vehicle. In [11], it is shown that /2 is a
compact sets are petite. Lyapunov function for the Metropolis-Hastings algorithm i
terms of the goal distributioy. However, it is is easy to
Theorem 1 ([9]) Suppose is y-irreducible and aperiodic. see that no function that is independentotan satisfy the
Then,V-exponential ergodicity is equivalent to the existenceondition (CD) for Optimotaxis.
of a functionV' that satisfies the condition (CD). Using the method developed in the following sections,
we were able to find a Lyapunov function for Optimotaxis
which turns out to be a nontrivial modification of the
In this section we give a Lyapunov proof for exponential yapunov function for the random walk generated by the
ergodicity of the process generated by the OptimotaXi§letropolis-Hastings algorithm. This Lyapunov function is
algorithm. Optimotaxis was introduced in [1] as a solution, — \1/24-1/2_ With such au we conclude exponential
to an in loco optimization problem with point measurementgrgodicity of the PDP in the following theorem. For some
only. This problem was extended in [10], where it was posegd 0, let 5 be a constant such that
as the problem of controlling the probability density of a”PD
by selecting the jump intensity and the jump kernel) as [Ving(z)||+e<n<oo . (1)
a function of an output. Applications were provided in th
area of mobile robotics, where the method can be used
solve problems such as search, deployment and monitori
In this paper we consider a simple instance of the ) )
controlled process obtained in [1]. The process represerfi§sumption 1 1) [[VIng]| is bounded
vehicles moving with positiorx € X = R? and velocity ~ 2) liminfy; e [VIng| >0
v € V = S% the unit sphere inR?. The measures is  3) The Hessiarfl,, Ing converges td) as ||z|| — occ.
the normalized surface measure on the sphere. In this case
we havef = v. In our output feedback formulation, the Theorem 2 Suppose that the output function satisfies
controller can only observe the output functigfx), which  Assumption 1. Then, foy as in (1),u = \/\/q is a Lya-
represents measurements of some physical signal takenpanov function for the PDP and the PDPisexponentially

where|| ||y = sup, <y | [ 7 du| for a measurg. on B.
We definethe continuous drift condition
(CD): For constants > 0, b < oo, a function\v > 1,
and a petite sef’, the functionV : ) — [1, 00) verifies

IIl. LYAPUNOV FUNCTIONS FOROPTIMOTAXIS

(;1e next assumption characterizes distributions with expo
r{bential decaying tails.



ergodic: Maximizing A on« € [—1n, 1], we have the worst-case bound
”Pt((xvv)v ) - 7T||u < BOue_bOt ﬁ2

A=kt a7 “)
for some positive constant®, and by and any initial (1-F)
condition (z,v) € X x V, wheredr = gdm. We can find the roots of the right-hand side of (4) as a

) ) function of k£ to conclude thatd < 0 for
Proof: Because\ > ¢ andw is restarted uniformly after

jumps, we have that, for ang, C' € B such thatn(A) > 0 L-V1=82/n p< it VIi— B*/n

and C is compact, there exists a tin#e < co such that the 2 - 2 '

probability of reaching4 from C'is positive fort > T'. This  In special,A < 0 holds independently of if and only if

shows that the process is-irreducible and aperiodic with % = 1/2. When~y = ¢~'/2, we have

compact sets as petite sets. From (6) in the next subsection )

we have . Aéﬂ—US(L (5)
Lu < _5% +ble 2

where the last inequality follows from Jensen’s inequality
for u = \/\/q, a compact sef’ and positive constantsand In addition, equality holds if and only i¥ In¢ = 0. This
co. We can then apply Theorem 1 to conclude the resmlt. analysis provides the valuable intuition that the tern
The process that led to the construction of this Lyapunow the convergence rate is taking into account how much
function is described in the following sections. information is provided by the gradient af q.
The condition ofg having an exponentially decaying tail One can also prove that the bound dnis minimized
in Theorem 2 is necessary. To see why, note that the vehicles n as small as possible. Thus, a design guideline that
finite velocity 1 gives a bound on how fast the support offollows is thatn must be chosen as small as possible in
a distribution can grow. For a vehicle starting at the originorder to minimize the bound oA and therefore maximize
the stationary density is approached with an error not @nallthe convergence rate.
than fllzll>tQ(x)m(dx) at timet, which [in the scalar case] To analyze the interplay betweeh and B, we make a
gives the boundim,_,~ d(Ing(r))/dr to the exponential distinction between two typical cases: a) wherhas an
rate of decay. exponential tail, e.g.q = exp(—c||z|); and b) wheng has
a polynomial tail, e.g.qg = ||=|| = for ||z|| large.
1) Invariant density with exponential tailln this case,
Our starting point is the candidate Lyapunov function  1im inf |, | 0 ||V Ing| > 0and, therefore, there is a positive
constant, such that3? < n—c for ||z|| large. On the other
u=y@)VX, (2)  hand,H,, Inq is bounded by a constant timgs||~! for ||z
where~(z) is some uniformly positive function to be iden- large. Thus,A dominatesB and we can use the bound in

tified. How we arrived to this candidate Lyapunov functior‘S) to conclude

A. Constructing a Lyapunov function

is the theme of the next sections. lim su @ < )2 ©6)
Since the considered PDP is-irreducible and compact HmH_ﬂf w =
sets are petite, we only need to analyze the behavidiuof
as||z|| goes to infinity. From the definition of the generatorfor u = \/\/q.
we have 2) Invariant density with polynomial tail:Both A and
Lu 1 B decay proportionally td|z|| =2 in this case. As a con-

Zu-
2
Define the auxiliary funcitonsy := v - Ving and g :=

InA+wv-Iny—A+ \/X/ VXdv . (3) sequence, our candidate Lyapunov function cannot be used
to prove exponential ergodicity. Yet, it may be used to prove
(non-exponential) ergodicity (see [13]). Results hereetelp

JVXdv=[\in=adv. We can rewrite (3) as on the specific invariant density. Because — 0 as
Lu 10 Hyplng v |z| — oo, a Lyapunov functionu = ¢~*v/A maintains
e tv-Viny+at+fyn—a—n, 4 nonpositive forz large only if & = 1/2. Thus, if we

are interested in using this in a Lyapunov stability proof
wheng has a tail of ordef|z||~¢, we must have: > 4 since
Lu is of the order|z||*/?~2. This is consistent with the fact

where’ denotes the transpose. Lgtr) = g(x)~* for some
constantt > 0. Then, we can rewrite

% _ _%v’ Hzf\lnq Y kata+ BT a—n . that ¢ is not a valid probability density when< 1.
We split the right-hand side into two parts and analyze thellfji' Consequences for the design
separately: The analysis in the previous subsection suggests how
we can change the algorithm of Optimotaxis to improve
A= —kata+fyn—a—n convergence properties. We do this by increasing the ndmina
1 v/ Hyplng o velocity. To this purpose, we redefine the vector field and the

2 A ’ jump rate to bef = vp, for some scalar nominal velocipy,



and\ = p(n—wv-Vingp). All other parameters are kept themeasureu on B, we define theaate function
same. Under the framework of [10], one can verify that Lu
remains the unique stationary density of the process as long () := sup {/ T dp:u € D(L),u> 1}
asln p is some bounded Lipschitz smooth functionzoénd
independent of. Intuitively, we can think of—% evaluated ay € ) as the
Whenp is a constant, we have that our previous Lyapuno{@té of convergence of the functian at the pointy and,
functionu = /(n — v-Vlng)/q has its convergence rate therefore,/ (1) would correspond tp the fastegtweighted _
Lu/u in (3) multiplied by p. Provided the original process is average rate of convergence achievable for some function
exponentially ergodic, one can improve the convergenee ra in the domain of the generator. Rate functions have a
in the tail of u arbitrarily by increasing. This, however, fundamental role in the study of the probability of rare
could even worsen the convergence rate to steady st&¢ents in the context of large deviations theory. However,
since it only takes into account the behavior on the taildt i not common to solve the maximization posed in (7)
Following our analysis in the previous subsection, the ter@Xplicitly. Our objective is to construct a Lyapunov furasti
A would become more negative, but the terh would v Dy Solving this maximization problem. -
become necessarily more positive on the neighborhoods ofA converse result is given in the following proposition,
the maxima ofg. Intuitively, to have good convergence oneWhich is proven in [14]. We say that a functidil, grows
wants vehicles to move slowly in the neighborhoods of thatrictly slower. thanW if imsup, o Wo(2)/W(z) = 0.
maxima of ¢ and to scape quickly from the regions where/Ve denote this relation b, <.

g is small. This motivates the use of an output—modulate'gro osition 1 Suppose that the/-exponentially ergodic
nominal velocity p(¢q) with the properties just mentioned. P PP P y €9

For this process, one can use the method in the next secti%rrﬁjcess(b(t) satisfies (CD) withi” unbounded off petite

. . . sets. Then, givem, € D(L) satisfyingl < ug < V and
with p = 1/p to find the Lyapunov functiom. = /\/qp " i) . .
that proves exponential ergodicity provided Ingp| is the growth condition-u, * Luo < W, there exists a unique

uniformly positive for||«|| large. Simulation results for this probablhty measurey such thatu, attains the supremum

new design are illustrated in Fig. 2, where we see that als%tg%}ir:n tﬁirt'fgﬁ?‘ gz)'f] dlifiotr:ue for Lyapunov functions
output-dependenp in the range[23,40] improves speed 9 9 '
of convergence with respect to = 25 while ultimately In view of [3], we can rewrite the rate function in terms

providing better convergence than= 50 [after vehicles of an optimization problem that will be shown to be convex:
approach the maxima af. _
PP o T(0) = sup {{,—e"ULeV) - U € D(C)} ()

where (-,-) denotes integration. From this point on it is
convenient to assume thd?(L) is an algebra and that
h € D(L) impliese € D(L).

Along with convexity, another important property of the
functional (u, —e=Y LeY) is that it depends affinely of the
differential operatorf - V. As a consequence, this operator
does not appear in the first variation optimality conditi® (
or in the second variation ofu, —e~Y LeY). This allows
one to exploit the compactness properties typically presen
in jump kernels.

Some useful facts about(u) are established in [3] for
the discrete-time case. From [3, Prop. 4.9], we have that
‘ ‘ ‘ ‘ ‘ I(u) > 0 and I(n) = 0 if and only if x is an invariant

’ “ “ime " measure fof® , and in this case the supremum is attained by
any constant function. Also from [3, Prop. 4.6] we have that
Fig. 2. Coefficient of correlation between the probabilisneity of vehicles £ (1) < oo only if 4 is absolutely continuous with respect to
atz and the output functiog(z) = 0.4e~ Izl +-0.6¢=Il=[1-5 =15l for  the invariant measure fob.
p = 25 (dot-dashed)p = 50 (dashed) angh = 40 tanh([23 + 1/¢°]/40) In the following theorem we provide a sufficient condition
(solid). For further simulation details, see [1]. for a function to attain the supremum in (8). Defihe =

Q.

Theorem 3 i. The optimization problem in (8) is a convex

In this section we discuss how one can obtain Lyapunov OPtimization problem irU.
functions for PDPs by solving relatively simple convex il- A sufficient condition foru = ¢ € D(L), U > 0, to
optimization problems. Such Lyapunov functions are relate ~ attain the supremum in (7) fofy = p dm, p € D(L"),
with a notion of convergence rate that appears in the theory S p

* p
of large deviations of Markov processes [2]. For a probapbili uk (a) —V-fp-Ku=0 mae (9

()

o
35
&

051+

Correlation Coefficient
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iii. Suppose:V is a solution to (9). Thers® € D(L)is also a(z)Qh for any h € B(Y) and anya independent ofv.
a solution if and only ifG(y) — U(y) = G(z) — U(z)  This implies that the set of solutions to (9) is invariant end
wu(dz)K(z,dy)-a.e. multiplication by a function ofr only.

. e We obtain from (10)
Roughly speaking, Theorem 3 (iii) implies that the set of

solutions to (9) is invariant under multiplication by hamo v-Vp+ \/(v VP2 +4Mp [u dv [ 22 dy
functions of Q (i.e., functionsh such thatQh = h). In u= 5 “
particular, this is always true for multiplication by a ctens. 2 [ L dv

A proof for the theorem is provided in [14]. This implies that there exist functionsand s such thatu

A. Computation of Optimizers satisfies the following structure

The main result in this section lies in the observation u=r(z) (U -Vp+ \/(v - Vp)? +)\ps(x))
that solving (9) foru can be done with relative ease for a
significant number of PDPs. This is true because (9) has noLet p be a multivariable normal distribution and let its
differential terms i, which makes it possible to exploit the covariance tend to infinity. The that results from the limit
compactness properties ff. In particular, whenk’ and K*  is equivalent to the one we would obtain with= 1, but
have finite rank, solving (9) reduces to a finite-dimensionah this casep would not be integrable. Although our theory
problem. A wide class that satisfies this property is given bljas no need to restrigt to be a probability measure, we
a generalization of the Markov Jump Linear systems in [16hvoid this path due to its more complicated interpretation.
where one may allow Markov transitions to depend on th&he resulting limit satisfies
continuous state. This is also the case of our Optimotaxis
example, where a closed form solution to (9) is provided. u=r(z)\/As(z) .

To see why this is possible, note that we can rewrite (
using the fact that, solves an implicit quadratic equation:

oy Vopf + (V- p))? + ApK () K (p/u)
2K (p/u) '

When K and K* have finite rank, this expression definedor any~(z) such thatu € D(L), u > 1.

a finite dimensional manifold where lies. Therefore, even  This u can be interpreted as the function that maximizes

when it is not possible to solve (10) explicitly, this eqoati the rate of convergence with equal weight for everyv). It

gives us structure to make good guesses for candiddgeclear that not all elements of the form (11) are Lyapunov

Lyapunov functions. functions for the PDP. However, we have arrived to a
One can also attempt to solve (10) via an iterative procéIrUCture for Lyapunov functions without which we were not

dure as follows: givenu,, replacex on the the right hand able to find Lyapunov functions in the past.

side of (10) withu,, and defineu,,; to be that value modulo

some normalization. The normalization is necessary sinc¥: EXAMPLE: A SCALAR LINEAR TRANSPORTPROCESS

the class of solutions to (9) is invariant under multiplioat In this section we show how the method proposed above
by a constant. Under reasonable conditions, this iteradon cgn pe applied to a process different from Optimotaxis.
verified to converge for finite rank jump kernels. The process we consider in this example appears in many
Finally, it is important to remark that this is the pointfie|ds ranging from neutron transport phenomena to biology
where our approach takes advantage of the specializedgsett{see [17] and references therein). This well studied psces
of PDPs. If, for example, one was to consider a purelyrovides a simple example of how our method can be used
deterministic proceSS, the solution set to (9) would beativ to find Lyapunov functions in closed form. This process

(either empty or the whole space of functions) andannot  describes a particle with positian € X' = R moving with
be used as a Lyapunov function. On the other hand, nontrivigélocity v € V = {—1,+1}. Velocity jumps occur with

results can be obtained in the nondeterministic case. Bltensity0 < ¢ < \,(z) < co and with@ = 8y}, Where

when one considers a general process that includes bofiyenotes the Dirac mass. A process so defined is aperiodic
jumps and diffusion, the solution to (9) is typically diffitu  and irreducible, with compact sets being petite.

equation.

9I%ecalling that the set of solutions to (9) is invariant under
multiplication by a function ofrz only, we have

(10) uw=~(x)V\ . (11)

v Vpy + 1/ (V- VD)2 + 4puApt_p A yp—p/U_sy

B. A Candidate Lyapunov Function for Optimotaxis uy(z) = TR

Although K = \@ is not a compact operator iB() = - . .
X x V), it is a finite rank operator iB()) for every fixed A-\sf.above, take the limit ap — 1. The resulting limit
x € X. In fact, if we regardQ as an operator inB(y) Sausfies
for a fixedz, its range is spanned by the constant function. Ao

Up(T) = u_y

Moreover, the operata) has the property tha® («(z)h) = Ay



This implies thatu,, /v/A, is independent of and, there-
fore, the class of minimizers consists of functions in tharfo

@)V A

where the functiony only depends on: . To construct a
Lyapunov function, we need now to selegtproperly. To
this purpose, we evaluate

Ly,

Uy

Uy ()

ln/\

=v(lny) + ) 4+ VA Ay

VI. CONCLUSIONS

We have presented a method for the construction of
Lyapunov functions for PDPs based on the maximization of
a certain notion of rate of convergence. This method allowed
us to construct a Lyapunov function to prove exponential er-
godicity for the Optimotaxis algorithm. Some open question
are how one can selegt such that the maximizer function
is guaranteed to be a Lyapunov function; and to find general
conditions under which the iterative procedure suggested i
Section IV-A converges to the solution of the optimization

where’ denotes derivative with respecttoln order to make
the right hand side negative for both valuesuwpfwe must
choosey so that

problem.
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Assuming that the inequalmes hold, we chodkey)’ to be
the mean of the two bounds:

1 1 1
(ln'y)l _5(111 V /\1)\71)1 + 5)\1 - 5/\,1 .

This leads to a consistent choice pf> 1 as long as\; >
A_1 in the positive tail { — +o00) and\; < A_; in the
negative tail £ — —oo). For this choice ofy we have

1
Kuv = l In \/)\_1 + )\1)\_1 — 7/\1 + )\_1
Uy 2 VA1 2

For x large enough, the derivative term in the right hand
side of (12) is either dominated by, or negative. There-
fore, exponential ergodicity depends solely on the diffiese
between the geometric and the arithmetic averages of thig]
jump intensities, which is uniformly negative providgd —
A_1| > 0 uniformly outside a compact set.

In summary, we have constructed a Lyapunov function
that predicts exponential ergodicity for the transportcess
given that there exists > 0 such thasgn(x)(A —A_1) > €
for |x| large enough. If this condition holds withdepending
on z but decaying more slowly thah/|z|, one can show
that Lu,, < 0 uniformly off a compact set, which is a known
condition for (non-exponential) ergodicity (see [13]).€Ee
results are consistent with the expression for the staljona[lz]
probability densityg, (x) for this process [17]:

@ (%) + g—v(x) = cexp (/Oz A — N\ dz)

This density is integrable if and only $gn(z)(A —A_1) >

0 decays more slowly than/|z|, which shows that our (15]
candidate Lyapunov function provides nonconservative- con
ditions for ergodicity. Although this is not the focus of our[16]
contribution, it is worth mentioning that, to the best of our
knowledge, there is no similar Lyapunov approach to this
problem in the literature. Finally we note that, despite the
similarities with Optimotaxis, this example shows that our
technique can construct Lyapunov functions for processes

with jump kernel qualitatively different.

< —= lIl )\1
(1]

(2]
(3]

(4]

(5]
(6]

(12)

(7]

El

[10]

[11]

(23]
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suggestions regarding the literature on large deviations.
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