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Abstract— The purpose of this contribution is twofold: 1)
to present for the first time a Lyapunov function that proves
exponential ergodicity of a process studied by the authors in [1],
where the problem of controlling the probability density of a
swarm of robotic agents was solved; 2) to introduce alongside
the method used to construct this Lyapunov function, which
is of interest in its own since it may be applicable to a wide
class of piecewise-deterministc Markov processes. Our method
searches for the Lyapunov function that maximizes a measure
of the rate of convergence that appears in the theory of large
deviations. Analytical solutions are often possible as shown by
examples.

I. I NTRODUCTION

Markov processes with jumps, such as piecewise-
deterministic Markov processes, offer a significant challenge
to the construction of stability proofs due to the nonlocal
interactions in the state space that are introduced by jumps.
Lyapunov stability criteria for such processes involve solving
partial integro-differential inequalities, which is typically
difficult to do numerically. This paper shows that Lyapunov
functions for such processes can be obtained from the
minimization of a convex functional that arises in the theory
of large deviations [2], [3]. In particular, we show that the
Lyapunov function that maximizes a specific measure of
convergence often used in large deviations theory satisfiesa
nonlinear integral equation without differential terms inthe
unknown. This equation is considerably simpler than integro-
differential inequalities and we present cases in which it can
be solved in closed form.

Our method was developed in the attempt to find Lyapunov
functions for a process studied by the authors in [1]. This
process consists of a hybrid Markov Chain Monte Carlo
(MCMC) approach in which a vehicle is induced to perform
a random walk with some prespecified stationary distribution.
This process is inspired by bacterial chemotaxis and we refer
to it as Optimotaxis. Stability was proven in the mentioned
previous work without the use of Lyapunov techniques.

The key advantage in using the Lyapunov-based tech-
niques to prove stability of a Markov process is that one
obtains information about the rate of convergence of the
process to the steady-state. In particular, the method used
in this paper to construct Lyapunov functions provides con-
ditions under which the law of the process in Optimotaxis
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converges exponentially fast to the steady-state distribution.
Information about the speed of convergence is important to
(1) estimate how long one needs to wait to be sufficiently
close to the steady-state distribution and (2) design processes
with fast convergence rates. This second point was exploited
in Section III-B.

The results in this paper have the limitation that, even
for a process for which the law of the process converges
exponentially to the steady-state distribution, it could happen
that the solution to our optimization is not a Lyapunov
function. In practice, this means that one needs to verify
if the function obtained here is indeed a Lyapunov function,
which is often a simple procedure.

II. PRELIMINARIES

A. Piecewise-Deterministic Markov Processes

Our paper follows closely the definition of piecewise-
deterministic Markov Processes (PDP) introduced in [4] and
extended in [5]. We consider the PDPξ(t) := (x(t),v(t))
evolving onY = X ×V , whereX ⊂ R

d andV is a compact
set. We denote byB the corresponding Borelσ-field and
by B(Y) the set of boundedB-measurable functions. For
brevity, we define the PDP in terms of its extended generator
[4], [5]:

Lh = f · ∇h+ λQh− λh

for h ∈ D(L) [for the sake of a simpler exposition, we
judiciously omit the fact that the extended generator takes
also path-differentiable functions in its domain; we remark,
however, that our derivations are valid on the full domain of
the generator]. Here∇ denotes the gradient with respect tox,
f : Y → X is the vector field that describes the deterministic
flow, the jump rateλ : Y → R

+ defines the infinitesimal
probability λdt of a jump occurring in the interval[0, dt],
and thejump kernelQ is such thatQh(y) :=

∫

h(ξ)Q(y, dξ)
for h ∈ B(Y), where, given that a jump occurs att = τ ,
Q(ξ, A) := Pr(ξ(τ) ∈ A | ξ−(τ) = ξ) for A ∈ B.

This PDP model is captured by several stochastic hybrid
system models that appeared in the literature, including [6],
[7]. Fig. 1 depicts a schematic representation of our PDP.

ẋ = f(x,v)

λ(x,v)

(x,v) ∼ Q((x−,v−), ·)

Fig. 1. Stochastic hybrid automaton for the PDP



Let m denote the Lebesgue measure inX . We assumeV
to be a compact subset of a locally compact separable metric
space equipped with a Borel probability measureν. We
denote byL1(m× ν) the space of real functions integrable
with respect tom × ν. As in [8], we assume the existence
of a kernelQ∗ such that

m× ν(dξ1)Q(ξ1, dξ2) = m× ν(dξ2)dνQ
∗(ξ2, dξ1) .

In this case, the adjointL∗ of L restricted toL1(m× ν) is
given by

L∗p = −∇ · fp+Q∗(λp)− λp

for p ∈ D(L∗) ⊂ L1(m× ν).

B. Exponential Ergodicity

Next, we briefly recall the drift condition for exponential
ergodicity of Markov process. The reader is referred to [9]
for a more complete definition of the main concepts. For a
Markov processΦ(t), let P t(y,A) = Pr(Φ(t) ∈ A|Φ(0) =
y), for A ∈ B, and letL denote its extended generator.

We say thatΦ(t) is V -exponentially ergodicif there exists
V : Y → [1,∞), an invariant probability measureπ, and
constantsB0, b0 > 0 such that

‖P t(y, ·)− π‖V ≤ B0V (y)e−b0t, ∀y ∈ Y ,

where‖µ‖V = sup|h|≤V

∣

∣

∫

h dµ
∣

∣ for a measureµ on B.
We definethe continuous drift condition

(CD): For constantsc > 0, b <∞, a functionW ≥ 1,
and a petite setC, the functionV : Y → [1,∞) verifies

LV ≤ −cWV + b1C .

We note that for the examples considered in this paper, all
compact sets are petite.

Theorem 1 ([9]) SupposeΦ isψ-irreducible and aperiodic.
Then,V -exponential ergodicity is equivalent to the existence
of a functionV that satisfies the condition (CD).

III. L YAPUNOV FUNCTIONS FOROPTIMOTAXIS

In this section we give a Lyapunov proof for exponential
ergodicity of the process generated by the Optimotaxis
algorithm. Optimotaxis was introduced in [1] as a solution
to an in loco optimization problem with point measurements
only. This problem was extended in [10], where it was posed
as the problem of controlling the probability density of a PDP
by selecting the jump intensityλ and the jump kernelQ as
a function of an output. Applications were provided in the
area of mobile robotics, where the method can be used to
solve problems such as search, deployment and monitoring.

In this paper we consider a simple instance of the
controlled process obtained in [1]. The process represents
vehicles moving with positionx ∈ X = R

d and velocity
v ∈ V = S

d, the unit sphere inRd. The measureν is
the normalized surface measure on the sphere. In this case
we havef = v. In our output feedback formulation, the
controller can only observe the output functionq(x), which
represents measurements of some physical signal taken at

positionx. The objective is to make the probability density
of the vehicles position to converge to the output function
q(x) and then have an external observer that can measure the
vehicles position to collect information aboutq(x), much like
in MCMC methods. Speed of convergence is particularly
critical for this application, since one needs to decide when
a good estimate ofq(x) has been obtained.

The jump intensity is chosen such thatλ(x, v) = η − v ·
∇ ln q(x), where the constantη is a design parameter that
must be chosen such thatλ is nonnegative. The jump kernel
is such thatx does not change andv has a jump distribution
that is uniform onV . More precisely,

Qh(x, v) =

∫

V

h(x, v)ν(dv)

for h ∈ B(Y). We have shown that a process with these
characteristics has indeed an invariant densityq(x) [1]. As
discussed in [1], this controller can be implemented using
just the information from the outputq(x).

Finding Lyapunov functions for this process is difficult
due to the intricate relationship between the continuous state
x and the discrete modev. To illustrate this, we consider the
Metropolis-Hastings algorithm, which is a classic MCMC
algorithm. Optimotaxis and Metropolis-Hastings are similar
in the sense that the probabilities to reject a point in
Metropolis-Hastings and the probability to reject a velocity v
in Optimotaxis are essentially the same. The main difference
is that, because in Metropolis-Hastings the state represents
a variable in a computer, the controller can look at a point
and reject it without moving the state to that point, which
in turn is not possible if the state represents the position
of a physical vehicle. In [11], it is shown thatq−1/2 is a
Lyapunov function for the Metropolis-Hastings algorithm in
terms of the goal distributionq. However, it is is easy to
see that no function that is independent ofv can satisfy the
condition (CD) for Optimotaxis.

Using the method developed in the following sections,
we were able to find a Lyapunov function for Optimotaxis
which turns out to be a nontrivial modification of the
Lyapunov function for the random walk generated by the
Metropolis-Hastings algorithm. This Lyapunov function is
u = λ1/2q−1/2. With such au we conclude exponential
ergodicity of the PDP in the following theorem. For some
ǫ > 0, let η be a constant such that

‖∇ ln q(x)‖ + ǫ ≤ η <∞ . (1)

The next assumption characterizes distributions with expo-
nential decaying tails.

Assumption 1 1) ‖∇ ln q‖ is bounded
2) lim inf‖x‖→∞ ‖∇ ln q‖ > 0
3) The HessianHxx ln q converges to0 as ‖x‖ → ∞.

Theorem 2 Suppose that the output functionq satisfies
Assumption 1. Then, forη as in (1),u =

√

λ/q is a Lya-
punov function for the PDP and the PDP isu-exponentially



ergodic:

‖P t((x, v), ·) − π‖u ≤ B0ue
−b0t

for some positive constantsB0 and b0 and any initial
condition(x, v) ∈ X × V , wheredπ = qdm.

Proof: Becauseλ > ǫ andv is restarted uniformly after
jumps, we have that, for anyA, C ∈ B such thatm(A) > 0
andC is compact, there exists a timeT <∞ such that the
probability of reachingA from C is positive fort ≥ T . This
shows that the process ism-irreducible and aperiodic with
compact sets as petite sets. From (6) in the next subsection
we have

Lu ≤ −c0
2
u+ b1C ,

for u =
√

λ/q, a compact setC and positive constantsb and
c0. We can then apply Theorem 1 to conclude the result.

The process that led to the construction of this Lyapunov
function is described in the following sections.

The condition ofq having an exponentially decaying tail
in Theorem 2 is necessary. To see why, note that the vehicles
finite velocity 1 gives a bound on how fast the support of
a distribution can grow. For a vehicle starting at the origin,
the stationary density is approached with an error not smaller
than

∫

‖x‖>t q(x)m(dx) at time t, which [in the scalar case]
gives the boundlimr→∞ d(ln q(r))/dr to the exponential
rate of decay.

A. Constructing a Lyapunov function

Our starting point is the candidate Lyapunov function

u = γ(x)
√
λ , (2)

whereγ(x) is some uniformly positive function to be iden-
tified. How we arrived to this candidate Lyapunov function
is the theme of the next sections.

Since the considered PDP ism-irreducible and compact
sets are petite, we only need to analyze the behavior ofLu
as‖x‖ goes to infinity. From the definition of the generator,
we have

Lu
u

=
1

2
v · lnλ+ v · ln γ − λ+

√
λ

∫ √
λ dν . (3)

Define the auxiliary funcitonsα := v · ∇ ln q and β :=
∫
√
λ dν =

∫ √
η − α dν. We can rewrite (3) as

Lu
u

= −1

2

v′ Hxx ln q v

λ
+ v · ∇ ln γ + α+ β

√
η − α− η ,

where′ denotes the transpose. Letγ(x) = q(x)−k for some
constantk > 0. Then, we can rewrite

Lu
u

= −1

2

v′ Hxx ln q v

λ
− kα+ α+ β

√
η − α− η .

We split the right-hand side into two parts and analyze them
separately:

A := −kα+ α+ β
√
η − α− η

B := −1

2

v′ Hxx ln q v

λ
.

MaximizingA onα ∈ [−η, η], we have the worst-case bound

A ≤ −ηk + β2

4 (1− k)
. (4)

We can find the roots of the right-hand side of (4) as a
function of k to conclude thatA ≤ 0 for

1−
√

1− β2/η

2
≤ k ≤ 1 +

√

1− β2/η

2
.

In special,A ≤ 0 holds independently ofβ if and only if
k = 1/2. Whenγ = q−1/2, we have

A ≤ β2 − η

2
≤ 0 , (5)

where the last inequality follows from Jensen’s inequality.
In addition, equality holds if and only if∇ ln q = 0. This
analysis provides the valuable intuition that the termA
in the convergence rate is taking into account how much
information is provided by the gradient ofln q.

One can also prove that the bound onA is minimized
for η as small as possible. Thus, a design guideline that
follows is that η must be chosen as small as possible in
order to minimize the bound onA and therefore maximize
the convergence rate.

To analyze the interplay betweenA andB, we make a
distinction between two typical cases: a) whenq has an
exponential tail, e.g.,q = exp(−c‖x‖); and b) whenq has
a polynomial tail, e.g.,q = ‖x‖−c for ‖x‖ large.

1) Invariant density with exponential tail:In this case,
lim inf‖x‖→∞ ‖∇ ln q‖ > 0 and, therefore, there is a positive
constantc0 such thatβ2 < η−c0 for ‖x‖ large. On the other
hand,Hxx ln q is bounded by a constant times‖x‖−1 for ‖x‖
large. Thus,A dominatesB and we can use the bound in
(5) to conclude

lim sup
‖x‖→∞

Lu
u

≤ −c0/2 , (6)

for u =
√

λ/q.
2) Invariant density with polynomial tail:Both A and

B decay proportionally to‖x‖−2 in this case. As a con-
sequence, our candidate Lyapunov function cannot be used
to prove exponential ergodicity. Yet, it may be used to prove
(non-exponential) ergodicity (see [13]). Results here depend
on the specific invariant densityq. Becauseβ → 0 as
‖x‖ → ∞, a Lyapunov functionu = q−k

√
λ maintains

A nonpositive forx large only if k = 1/2. Thus, if we
are interested in using thisu in a Lyapunov stability proof
whenq has a tail of order‖x‖−c, we must havec ≥ 4 since
Lu is of the order‖x‖c/2−2. This is consistent with the fact
that q is not a valid probability density whenc ≤ 1.

B. Consequences for the design

The analysis in the previous subsection suggests how
we can change the algorithm of Optimotaxis to improve
convergence properties. We do this by increasing the nominal
velocity. To this purpose, we redefine the vector field and the
jump rate to bef = vρ, for some scalar nominal velocityρ,



andλ = ρ(η−v ·∇ ln qρ). All other parameters are kept the
same. Under the framework of [10], one can verify thatq
remains the unique stationary density of the process as long
as ln ρ is some bounded Lipschitz smooth function ofx and
independent ofv.

Whenρ is a constant, we have that our previous Lyapunov
function u =

√

(η − v · ∇ ln q)/q has its convergence rate
Lu/u in (3) multiplied byρ. Provided the original process is
exponentially ergodic, one can improve the convergence rate
in the tail of u arbitrarily by increasingρ. This, however,
could even worsen the convergence rate to steady state
since it only takes into account the behavior on the tails.
Following our analysis in the previous subsection, the term
A would become more negative, but the termB would
become necessarily more positive on the neighborhoods of
the maxima ofq. Intuitively, to have good convergence one
wants vehicles to move slowly in the neighborhoods of the
maxima ofq and to scape quickly from the regions where
q is small. This motivates the use of an output-modulated
nominal velocityρ(q) with the properties just mentioned.
For this process, one can use the method in the next section
with p = 1/ρ to find the Lyapunov functionu =

√

λ/qρ
that proves exponential ergodicity provided‖∇ ln qρ‖ is
uniformly positive for‖x‖ large. Simulation results for this
new design are illustrated in Fig. 2, where we see that an
output-dependentρ in the range[23, 40] improves speed
of convergence with respect toρ = 25 while ultimately
providing better convergence thanρ = 50 [after vehicles
approach the maxima ofq].
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Fig. 2. Coefficient of correlation between the probability density of vehicles
at x and the output functionq(x) = 0.4e−‖x‖+0.6e−‖x−[1.5 −1.5]′‖ for
ρ = 25 (dot-dashed),ρ = 50 (dashed) andρ = 40 tanh([23 + 1/q2]/40)
(solid). For further simulation details, see [1].

IV. LYAPUNOV FUNCTIONS AND RATE FUNCTIONS

In this section we discuss how one can obtain Lyapunov
functions for PDPs by solving relatively simple convex
optimization problems. Such Lyapunov functions are related
with a notion of convergence rate that appears in the theory
of large deviations of Markov processes [2]. For a probability

measureµ on B, we define therate function

I(µ) := sup

{
∫

−Lu
u

dµ : u ∈ D(L), u ≥ 1

}

. (7)

Intuitively, we can think of−Lu
u evaluated aty ∈ Y as the

rate of convergence of the functionu at the pointy and,
therefore,I(µ) would correspond to the fastestµ-weighted
average rate of convergence achievable for some function
u in the domain of the generator. Rate functions have a
fundamental role in the study of the probability of rare
events in the context of large deviations theory. However,
it is not common to solve the maximization posed in (7)
explicitly. Our objective is to construct a Lyapunov function
u by solving this maximization problem.

A converse result is given in the following proposition,
which is proven in [14]. We say that a functionW0 grows
strictly slower thanW if lim sup‖x‖→∞W0(x)/W (x) = 0.
We denote this relation byW0 ≪W .

Proposition 1 Suppose that theV -exponentially ergodic
processΦ(t) satisfies (CD) withW unbounded off petite
sets. Then, givenu0 ∈ D(L) satisfying1 ≤ u0 ≤ V and
the growth condition−u−1

0 Lu0 ≪ W , there exists a unique
probability measureµ such thatu0 attains the supremum
in (7). In particular, this is true for Lyapunov functions
satisfying the growth condition.

In view of [3], we can rewrite the rate function in terms
of an optimization problem that will be shown to be convex:

I(µ) = sup
{

〈µ,−e−ULeU 〉 : eU ∈ D(L)
}

(8)

where 〈·, ·〉 denotes integration. From this point on it is
convenient to assume thatD(L) is an algebra and that
h ∈ D(L) implies eh ∈ D(L).

Along with convexity, another important property of the
functional 〈µ,−e−ULeU 〉 is that it depends affinely of the
differential operatorf · ∇. As a consequence, this operator
does not appear in the first variation optimality condition (9)
or in the second variation of〈µ,−e−ULeU 〉. This allows
one to exploit the compactness properties typically present
in jump kernels.

Some useful facts aboutI(µ) are established in [3] for
the discrete-time case. From [3, Prop. 4.9], we have that
I(µ) ≥ 0 and I(µ) = 0 if and only if µ is an invariant
measure forΦ , and in this case the supremum is attained by
any constant function. Also from [3, Prop. 4.6] we have that
I(µ) <∞ only if µ is absolutely continuous with respect to
the invariant measure forΦ.

In the following theorem we provide a sufficient condition
for a function to attain the supremum in (8). DefineK =
λQ.

Theorem 3 i. The optimization problem in (8) is a convex
optimization problem inU .

ii. A sufficient condition foru = eU ∈ D(L), U ≥ 0, to
attain the supremum in (7) fordµ = p dm, p ∈ D(L∗),
is

uK∗
( p

u

)

−∇ · fp− p

u
Ku = 0 m-a.e. (9)



iii. SupposeeU is a solution to (9). Then,eG ∈ D(L) is also
a solution if and only ifG(y) − U(y) = G(z) − U(z)
µ(dz)K(z, dy)-a.e.

Roughly speaking, Theorem 3 (iii) implies that the set of
solutions to (9) is invariant under multiplication by harmonic
functions ofQ (i.e., functionsh such thatQh = h). In
particular, this is always true for multiplication by a constant.
A proof for the theorem is provided in [14].

A. Computation of Optimizers

The main result in this section lies in the observation
that solving (9) foru can be done with relative ease for a
significant number of PDPs. This is true because (9) has no
differential terms inu, which makes it possible to exploit the
compactness properties ofK. In particular, whenK andK∗

have finite rank, solving (9) reduces to a finite-dimensional
problem. A wide class that satisfies this property is given by
a generalization of the Markov Jump Linear systems in [16],
where one may allow Markov transitions to depend on the
continuous state. This is also the case of our Optimotaxis
example, where a closed form solution to (9) is provided.

To see why this is possible, note that we can rewrite (9)
using the fact thatu solves an implicit quadratic equation:

u =
∇ · pf +

√

(∇ · pf)2 + 4pK(u)K∗(p/u)

2K∗(p/u)
. (10)

WhenK andK∗ have finite rank, this expression defines
a finite dimensional manifold whereu lies. Therefore, even
when it is not possible to solve (10) explicitly, this equation
gives us structure to make good guesses for candidate
Lyapunov functions.

One can also attempt to solve (10) via an iterative proce-
dure as follows: givenun, replaceu on the the right hand
side of (10) withun and defineun+1 to be that value modulo
some normalization. The normalization is necessary since
the class of solutions to (9) is invariant under multiplication
by a constant. Under reasonable conditions, this iterationis
verified to converge for finite rank jump kernels.

Finally, it is important to remark that this is the point
where our approach takes advantage of the specialized setting
of PDPs. If, for example, one was to consider a purely
deterministic process, the solution set to (9) would be trivial
(either empty or the whole space of functions) andu cannot
be used as a Lyapunov function. On the other hand, nontrivial
results can be obtained in the nondeterministic case. But,
when one considers a general process that includes both
jumps and diffusion, the solution to (9) is typically difficult,
since one would be dealing with a partial integro-differential
equation.

B. A Candidate Lyapunov Function for Optimotaxis

AlthoughK = λQ is not a compact operator inB(Y =
X × V), it is a finite rank operator inB(V) for every fixed
x ∈ X . In fact, if we regardQ as an operator inB(V)
for a fixedx, its range is spanned by the constant function.
Moreover, the operatorQ has the property thatQ(α(x)h) =

α(x)Qh for any h ∈ B(Y) and anyα independent ofv.
This implies that the set of solutions to (9) is invariant under
multiplication by a function ofx only.

We obtain from (10)

u =
v · ∇p+

√

(v · ∇p)2 + 4λp
∫

u dν
∫ λp

u dν

2
∫

λp
u dν

.

This implies that there exist functionsr and s such thatu
satisfies the following structure

u = r(x)
(

v · ∇p+
√

(v · ∇p)2 + λps(x)
)

.

Let p be a multivariable normal distribution and let its
covariance tend to infinity. Theu that results from the limit
is equivalent to the one we would obtain withp = 1, but
in this casep would not be integrable. Although our theory
has no need to restrictµ to be a probability measure, we
avoid this path due to its more complicated interpretation.
The resulting limit satisfies

u = r(x)
√

λs(x) .

Recalling that the set of solutions to (9) is invariant under
multiplication by a function ofx only, we have

u = γ(x)
√
λ . (11)

for any γ(x) such thatu ∈ D(L), u ≥ 1.
This u can be interpreted as the function that maximizes

the rate of convergence with equal weight for every(x, v). It
is clear that not all elements of the form (11) are Lyapunov
functions for the PDP. However, we have arrived to a
structure for Lyapunov functions without which we were not
able to find Lyapunov functions in the past.

V. EXAMPLE : A SCALAR L INEAR TRANSPORTPROCESS

In this section we show how the method proposed above
can be applied to a process different from Optimotaxis.
The process we consider in this example appears in many
fields ranging from neutron transport phenomena to biology
(see [17] and references therein). This well studied process
provides a simple example of how our method can be used
to find Lyapunov functions in closed form. This process
describes a particle with positionx ∈ X = R moving with
velocity v ∈ V = {−1,+1}. Velocity jumps occur with
intensity 0 < ǫ ≤ λv(x) < ∞ and withQ = δ{−v}, where
δ denotes the Dirac mass. A process so defined is aperiodic
and irreducible, with compact sets being petite.

From (10), we can derive an optimizer of the form

uv(x) =
v · ∇pv +

√

(v · ∇pv)2 + 4pvλvu−vλ−vp−v/u−v

2p−vλ−v/u−v
.

As above, take the limit asp → 1. The resulting limit
satisfies

uv(x) = u−v

√

λv
λ−v

.



This implies thatuv/
√
λv is independent ofv and, there-

fore, the class of minimizers consists of functions in the form

uv(x) = γ(x)
√

λv ,

where the functionγ only depends onx . To construct a
Lyapunov function, we need now to selectγ properly. To
this purpose, we evaluate

Luv
uv

= v(ln γ)′ +
v

2
(lnλv)

′ +
√

λvλ−v − λv

where′ denotes derivative with respect tox. In order to make
the right hand side negative for both values ofv, we must
chooseγ so that

− 1

2
(lnλ−1)

′ +
√

λ1λ−1 − λ−1 < (ln γ)′

< −1

2
(lnλ1)

′ −
√

λ1λ−1 + λ1 .

Assuming that the inequalities hold, we choose(ln γ)′ to be
the mean of the two bounds:

(ln γ)′ = −1

2
(ln
√

λ1λ−1)
′ +

1

2
λ1 −

1

2
λ−1 .

This leads to a consistent choice ofγ ≥ 1 as long asλ1 ≥
λ−1 in the positive tail (x → +∞) and λ1 ≤ λ−1 in the
negative tail (x→ −∞). For this choice ofγ we have

Luv
uv

=
1

2

(

ln

√
λ1

√

λ−1

)′

+
√

λ1λ−1 −
λ1 + λ−1

2
. (12)

For x large enough, the derivative term in the right hand
side of (12) is either dominated byλ1 or negative. There-
fore, exponential ergodicity depends solely on the difference
between the geometric and the arithmetic averages of the
jump intensities, which is uniformly negative provided|λ1−
λ−1| > 0 uniformly outside a compact set.

In summary, we have constructed a Lyapunov function
that predicts exponential ergodicity for the transport process
given that there existsǫ > 0 such thatsgn(x)(λ1−λ−1) > ǫ
for |x| large enough. If this condition holds withǫ depending
on x but decaying more slowly than1/|x|, one can show
thatLuv < 0 uniformly off a compact set, which is a known
condition for (non-exponential) ergodicity (see [13]). These
results are consistent with the expression for the stationary
probability densityqv(x) for this process [17]:

qv(x) + q−v(x) = c exp

(
∫ x

0

λ−1 − λ1 dz

)

.

This density is integrable if and only ifsgn(x)(λ1 −λ−1) >
0 decays more slowly than1/|x|, which shows that our
candidate Lyapunov function provides nonconservative con-
ditions for ergodicity. Although this is not the focus of our
contribution, it is worth mentioning that, to the best of our
knowledge, there is no similar Lyapunov approach to this
problem in the literature. Finally we note that, despite the
similarities with Optimotaxis, this example shows that our
technique can construct Lyapunov functions for processes
with jump kernel qualitatively different.

VI. CONCLUSIONS

We have presented a method for the construction of
Lyapunov functions for PDPs based on the maximization of
a certain notion of rate of convergence. This method allowed
us to construct a Lyapunov function to prove exponential er-
godicity for the Optimotaxis algorithm. Some open questions
are how one can selectµ such that the maximizer function
is guaranteed to be a Lyapunov function; and to find general
conditions under which the iterative procedure suggested in
Section IV-A converges to the solution of the optimization
problem.
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