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Parsimonious Bayesian Filtering in Markov Jump
Systems with Applications to Networked Control

Alexandre Rodrigues Mesquita

Abstract—We consider the problem of controlling the precision
of the multiple-model multiple-hypothesis filter with Gaussian
mixture reduction. The controller adaptively chooses the number
of hypotheses kept by the filter to (sub-)optimally seek a tradeoff
between filter precision and computational effort. In order to
quantify the approximation error due to hypotheses truncation,
the controller employs probability divergence measures such as
f -divergences and the Wasserstein divergence. The proposed
solution is tested on the problem of estimating the states of a
networked control system with packet drops on the controller-
actuator channel. Theoretical results demonstrate that our strat-
egy leads to a divergence between the true Bayes posterior and
the truncated one that remains bounded over time. Numerical
results show a good improvement with respect to truncation with
a constant number of hypotheses, specially as the number of
modes increases and so does the problem dimensionality.

I. INTRODUCTION

A major challenge in the state estimation of hybrid dynam-
ical systems from a Bayesian approach lies in the exponential
growth over time of the number of possible continuous state
trajectories. This is of particular relevance for Markov Jump
Systems (MJSs) since, in the linear case, the Bayes poste-
rior may be computed in closed form. Solving this problem
exactly, however, would require a bank of Kalman filters
with exponentially growing size over time. To cope with this
problem, the multiple model multiple hypothesis filter (M3H)
was proposed in [1], [2]. Given that the Bayes posterior in this
case is a probability mixture, the M3H truncates and merges
the components of this mixture taking into account the history
of the discrete states associated to each component.

In order to also incorporate continuous state information in
the merging process, the multiple model multiple hypothesis
filter with Gaussian mixture reduction (M3HR) was proposed
in [3]. This approach merges the mixture components using
clustering techniques discussed in [4]. The number of clusters
in [3] was pre-selected and kept constant over time. However,
by adaptively choosing the number of clusters during the
filter operation, one could obtain suitable combinations of
estimation error and processing time.

If one considers the possibility of varying the number of
clusters with time, we see that, encrusted in the problem of
Bayesian filtering of hybrid systems, there is a problem of
filter precision control. More precisely, we have an optimal
control problem in which one wants to minimize both the

The author was with the Department of Electronic Engineering, Federal
University of Minas Gerais, Belo Horizonte, MG, 31270-901 Brazil e-mail:
amesquita12@ufmg.br

This work was partially supported by the project INCT-INSAC under grants
CNPq 465755/2014-3, FAPESP 2014/50851-0

time-averaged estimation error and the average computational
effort per time-step.

In this work we formulate and solve such a control problem
employing different probability measure divergences to allow
us to quantify the estimation error. Essential to this formulation
is the possibility of aggregating approximation errors made
at different times. To this purpose, we use an equivalent of
the law of cosines in Euclidean space, to aggregate errors in
probability space in a fashion that is less conservative than
simply applying the triangle inequality.

This precision control is then applied to the M3HR filter in
the fashion of the Runnalls’ algorithm [5], which was the most
time-efficient clustering algorithm tested in [3]. Numerical
results demonstrate reasonable improvement in comparison to
the open-loop approach.

As for probability divergences, we study both f -
divergences, which take into account only the information
content of each distribution regardless of the state space
metric, and the Wasserstein distance, which takes into account
the state space metric.

This problem is fundamentally different from the standard
clustering problem as the latter is static and is not performed
in real-time. Because truncation errors may expand over time,
a poor choice of divergence or of controller may lead to
unbounded aggregated errors in the long run.

It is also fair to notice the distinction between the problem
we propose and that of minimizing the estimation error subject
to a fixed computational deadline (equal to the sample time for
example) at each time-step. The solution to the latter is trivial
as the controller should just keep computing until the deadline
is reached. Instead we care about the average computational
time and do not impose a bound to each time-step. This is
motivated by the fact that typical filter computations achieve
reasonable precision much earlier than sample times and,
therefore, computational time should be constrained due to
CPU power conservation and not by the sampling period.

Although the idea of filter precision control is not com-
pletely new (see, for example, [6]), it is is new in the context
of Bayesian filtering of hybrid systems where computational
effort is the control input. Our main contribution, in Section
III, is to extend the results in [3] to an optimal control
framework that provides formal bounds to the average costs
associated with filter precision and computational effort. Other
contributions include Theorem 1, which is of general impor-
tance to Information Theory and to clustering, as it allows
measuring of approximation errors; Theorem 8, which gives
new bounds and fast approximations of Wasserstein distances;
and Proposition 9, which establishes a promising link between
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Information Theory and Control Theory.
In the next section, we motivate our problem with an

example from networked control.

II. A PROBLEM IN NETWORKED CONTROL

A common challenge in networked control systems lies
in the loss of data packets due to channel noise or channel
interference (see [7] for a review of this issue). Packet loss
events may be modeled by Markov chains whose transitions
are independent on the actual information content of packets.
Thus, a control system whose sensors, controllers or actuators
are connected by a packet dropping network is a standard
example of a Markov Jump System.

In this work we consider the problem of drops in the
controller-actuator channel (see [7] for the problem of drops
in the sensor-controller channel). Let xk ∈ Rd be the state of
a linear system with dynamics given by

xk+1 = Axk + εkBuk + wk (1)
yk = Cxk + vk , (2)

where yk ∈ Rno are the observations corrupted by white
Gaussian noise vk with covariance Rv , uk ∈ Rni is the
controller input and the disturbance wk is white Gaussian
noise, which is independent of vk and has covariance Rw.
The process εk ∈ {0, 1} accounts for packet drops in the
controller-actuator channel and it is modeled by the discrete
Hidden Markov Model (εk,mk) characterized by

Pr{mk+1 = j|mk = i} = πj|i (3)
Pr{εk = j|mk = i} = %j|i (4)

where [πj|i] and [%j|i] define the transition and emission
matrices respectively and where the discrete state mk lies in
the set {1, . . . ,M}.

It is assumed that the controller only has knowledge of
the sequence y1:k, not observing εk or mk directly. Had the
controller knowledge of εk, the optimal state estimator would
be a simple Kalman filter.

The Bayes approach to this problem would be to consider all
possible sequences ε1:k, obtain the posteriors p(xk|ε1:k, y1:k)
given by the respective Kalman filters and then weight each
posterior according to its likelihood. Unfortunately, the number
of possible sequences ε1:k (and of Kalman filters) grows
exponentially as 2k. That is why any Bayesian approach to
filtering MJSs needs truncation.

To make it more precise, let xk|k denote the posterior
estimates of xk when (m0, x0) is distributed with priors
πm0

φm0
(x0), where φm0

= N (µm0
,Σm0

) and N denotes
the multivariate normal distribution with given mean and
covariance matrix. For prior m0 = i, define the likelihood
function of the output sequence y1:k and the n-th possible
mode sequence ε(n)

1:k , n = 1, . . . , 2k, as

`i,k,n :=

∫
p
(
y1:k, ε

(n)
1:k |m0, x0

)
φi(x0)dx0 .

Denote by µi,k,n the posterior means at time k given by the
Kalman filter corresponding to the n-th emission sequence and
to prior m0 = i.

Then, by the hidden Markov structure of the process (see
[8], [9] for a review of Bayesian filtering), the posterior means
are given by the sum of the means for the continuous filters
weighted by the posterior probability for each component:

xk|k =
∑
i,n

πi`i,k,n
`k

µi,k,n ,

where `k =
∑
i,n πi`i,k,n.

In our experiments, we focus on the particular case of
memoryless erasure channels, where

[πij ] =

[
1− p0 p0

1− p0 p0

]
and [%ij ] =

[
0 1
1 0

]
,

such that m = 1 always corresponds to a successful trans-
mission and m = 2 corresponds to a drop and the drop
probability is given by the number p0. In this case there is
no real distinction between the mode variable mk and the
emission variable εk.

III. A FRAMEWORK FOR PRECISION CONTROL

In this section we compute bounds for the approximation
error due to successive truncations of the probability densities
in a Bayesian filter. These bounds are then used to propose
suboptimal control strategies that trade off computational time
and filter precision.

Runnalls’ algorithm, which is employed by the M3HR filter,
works by recursively merging mixture components pairwise.
As a criterion to select the pairs to be merged, it computes a
bound on the Kullback-Leibler divergence between the original
mixture and the reduced one. The Gaussian mixture composed
of this pair of Gaussians is then replaced by the Gaussian that
preserves the first two moments. In this section, considering
more general divergence measures, we want to quantify the
overall error induced by successive pairwise merges.

For a given space P of probability distributions, consider
a mixture probability distribution in P with components
(wi, νi), i = 1, . . . , N . Given a merging function γt : P×P 7→
P , t ∈ [0, 1], define ν̄n as the measure obtained from the
consecutive pairwise merging of ν1, ν2, . . . , νn as follows

ν̄n = γ(wn
w̄n

)(ν̄n−1, νn), n ≥ 2, ν̄1 = ν1 ,

where w̄n =
∑n
i=1 wi.

Now, consider a generic divergence function D : P ×P 7→
R≥0 ∪ {∞} and assume that D is jointly convex.

Assumption 1. For t ∈ [0, 1], ν1 and ν2 ∈ P , there exists a
function D̄t : P × P 7→ R≥0 ∪ {∞} such that

(1− t)D(ν1, ν) + tD(ν2, ν) ≤ D(γt(ν1, ν2), ν) + D̄t(ν1, ν2) ,

(5)

for all ν ∈ P .

Theorem 1. Suppose that γt and D̄t satisfy Assumption 1.
Then, the total divergence resulting from consecutive pairwise
merges is bounded as

D

(
N∑
i=1

wiνi, ν

)
≤D(ν̄N , ν) +

N∑
n=2

w̄nD̄wn
w̄n

(ν̄n−1, νn) , (6)
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for all ν ∈ P . Consequently, if we denote by ∆n the bound
associated to the approximation error D (

∑n
i=1 wiνi, ν̄n), we

have the recurrence
(7)∆n = ∆n−1 + w̄nD̄wn

w̄n
(ν̄n−1, νn) .

Proof. From the convexity of D we have that

D

(
N∑
i=1

wiνi, ν

)
≤w1D(ν1, ν)+(1−w1)D

(
N∑
i=2

wi
1− w1

νi, ν

)
.

(8)

Next, we note that

(9)

w̄n−1D(ν̄n−1, ν) + (1− w̄n−1)D

(
N∑
i=n

wi
1− w̄n−1

νi, ν

)
≤ w̄n−1D(ν̄n−1, ν) + wnD(νn, ν)

+ (1− w̄n)D

(
N∑

i=n+1

wi
1− w̄n

νi, ν

)

= w̄n

((
1− wn

w̄n

)
D(ν̄n−1, ν) +

wn
w̄n
D(νn, ν)

)
+ (1− w̄n)D

(
N∑

i=n+1

wi
1− w̄n

νi, ν

)
≤ w̄nD̄wn

w̄n
(ν̄n−1, νn) + w̄nD(ν̄n, ν)

+ (1− w̄n)D

(
N∑

i=n+1

wi
1− w̄n

νi, ν

)
,

where the first inequality follows from the convexity of D and
the second is a consequence of (5). Applying inequality (9)
successively starting from (8) gives (6). Replacing ν by ν̄n in
(6) gives the second part of the theorem as stated in (7).

Remark 1. Note that, if we replaced D in (5) by the Euclidean
distance squared, D̄t by t(1−t)‖x−y‖2 and make γt(x, y) =
(1− t)x+ ty, we would have that (5) is satisfied with equality.
This identity is equivalent to the law of cosines and it gives
much tighter error bounds than the triangle inequality.

Let ν(k) and ν̄(k) be the posterior distributions for the Bayes
filter at time k having different priors ν(0) and ν̄(0). Assume
the divergence D admits a contraction rate α ∈ (0, 1), i.e.,

D(ν(k+1), ν̄(k+1)) ≤ αD(ν(k), ν̄(k)), ∀k ≥ 0, ν(0), ν̄(0) ∈ P .

Then, if we denote by Ek the bound on the truncation error
accumulated from all times previous to k, (7) gives that

(10)Ek = αEk−1 + α∆(k−1) ,

where ∆(k) is the bound on the total truncation error at time
k obtained from (7) combining all clusters:

∆(k) =
∑

all j clusters

ŵj∆
(k)
j ,

where ŵj is the total probability mass of the j-th cluster and
∆

(k)
j is the truncation error for that same cluster.
This evolution of the truncation error suggests the formu-

lation of the control problem as a Markov Decision Process
(MDP) where the decision variable is the number of com-
ponents to keep at each time-step and where the cost to

be minimized is a function of the truncation error and the
computational effort. This would be a MDP with state Ek and
with actions Nk,m, defined as the number of components of
the reduced measure for mode m at time k. The instantaneous
cost would be c(Ek, Nk) = Ek + βτ(Nk), for some weight
β > 0 and some function τ(·) that describes the impact of the
action vector Nk = [Nk,m] on the computational effort. Then,
an optimal solution to the MDP is a policy that picks Nk as
a function of Ek in order to minimize the discounted cost

∞∑
k=1

γk E[c(Ek, Nk)] ,

where γ ∈ (0, 1) is the discount factor.
Next we derive a rollout policy that suboptimally solves this

MDP (refer to [10] for an introduction to rollout policies and
approximate dynamic programming). We start with a policy
θ0 characterized by the action Nk being constant over time.
The value function Vθ0(·) associated to this policy satisfies the
Bellman equation

(11)Vθ0(Ek) = E [c(Ek, Nk) + γVθ0(Ek+1)]

= Ek + βτ(Nk) + γE[Vθ0(αEk + α∆(k))] ,

where we used (10) in the last equality. Assume now that
∆(k) reaches an ergodic limit such that E[∆(k)] is constant
(this assumption is justified in Section V-C). Then, we can
check that Vθ0(Ek) = Ek/(1− γα) + η0 solves (11) for some
constant η0. A rollout policy θ1 is now defined by picking the
actions that minimize the total cost predicted by Vθ0 at each
time-step:

(12)
Nk = arg min

Nk

E [c(Ek, Nk) + γVθ0(Ek+1)]

= arg min
Nk

γα

1− γα
∆(k) + βτ(Nk) .

Rollout policies guarantee that the total cost is upper-bounded
by Vθ0(E0), but in practice they give much smaller costs.
Computing the minimum in (12) would by itself affect the
computational time τ(Nk) if this is to be done online. Instead,
with the help of Theorem 1, we can check for a local minimum
by looking at the first difference with respect to Nk:

γα

1− γα
w̄nD̄wn

w̄n
(ν̄n−1, νn) + β(τ(Nk − δm)− τ(Nk)) ,

where n is such that the merge of ν̄n−1 and νn would lead to
Nk,m − 1 components; δm is the indicator vector at m. This
leads to a threshold condition according to which we should
truncate one component at a time and stop when the error
introduced by the next truncation satisfies

(13)w̄nD̄wn
w̄n

(ν̄n−1, νn)>
1− γα

γα
β(τ(Nk)−τ(Nk−δm)) .

In words, one should stop truncating when the incremental
truncation error becomes larger than a constant times the ex-
pected decrease in computational effort. The above condition
does not guarantee that the number of components will remain
bounded for all time. For this reason it is desirable to add to
the stopping criterion the condition that

∑
mNk,m ≤ Nmax,

for some constant Nmax large enough. Taking into account all
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these considerations, the proposed strategy is summarized in
Algorithm 1.

Algorithm 1 performs a Bayes filtering step, consisting
of a bank of Kalman filters, and truncates the number of
hypotheses using our suboptimal policy instead of Runnalls’
algorithm, which was used in the M3HR filter. The number
of hypotheses (filters) increases M -fold at every Bayes step
(line 3). Truncation starts by computing the truncation error
(left-hand side of (13)) associated to all possible two by two
merges and storing them in di,j,m (line 4). Then we select
the merge that provides minimal truncation error (line 7) and
check whether this error satisfies (13) (line 8). If so, the
algorithm is set to stop as soon as the number of components
is less than or equal to Nmax. Next, the merge is performed
(lines 14-17), the d matrix is updated (line 21) and a new
merge cycle is started returning to line 6.

Algorithm 1 M3H Filtering with Suboptimal Gaussian Mix-
ture Model Reduction

1: Given the posterior pdf for (x0,m0) defined by a mixture

ν̃ =

M∑
m=1

Nm∑
i=1

wi,mνi,m,

and given κ0 constant, Nmax integer and k = 1,
2: Get observation yk and input uk,
3: Get the new posterior pdf:

([wi,m], [νi,m]) = BayesFilter (yk, uk, [wi,m], [νi,m]) ,

4: Compute the truncation error for the i, j merge:

di,j,m = (wi,m+wj,m)D̄wj,m/(wi,m+wj,m)(νi,m, νj,m)

for all i < j and all m.
5: Set StopFlag=FALSE.
6: while

∑
m Nm > M do

7: Find the indices i∗ < j∗ and m∗ that minimize di,j,m.
8: if di∗,j∗,m∗ > κ0[τ([Nm])− τ([Nm]− δm∗)] then
9: Set StopFlag=TRUE.

10: if
∑
m Nm ≤ Nmax then

11: break
12: end if
13: end if
14: Set wi∗,m∗ = wi∗,m∗ + wj∗,m∗ .
15: Set νi∗,m∗ = γwj∗,m∗/wi∗,m∗ (νi∗,m∗ , νj∗,m∗).
16: Remove component j∗ from the mixture of index m∗.
17: Set Nm∗ = Nm∗ − 1.
18: if

∑
m Nm ≤ Nmax & StopFlag then

19: break
20: end if
21: Update di∗,j,m∗ for j > i∗.
22: end while
23: Increment k and return to step 2.
{ Actual calculations use ln(wi,m) to avoid issues with multiplication precision.}

The knowledge of the contraction rate α is actually not
needed. Given that a rate α exists, we can experimentally try
different constants κ0 > 0 in Algorithm 1 and pick one that
is suitable. This is the equivalent of the user choosing the

weight β since, for every κ0 > 0, there exists β such that
κ0 = β((γα)−1 − 1) as in (13).

Note in addition that, even when α ≥ 1 and there is no
contraction effectively, the above framework still works for
small enough discount factors (γ < α−1).

The computational time due to the filtering step is linear
in Nm since at most M

∑
m Nm Kalman filters are run after

we reduce each mixture to a size of Nm. Thus, the mixture
reduction step, which is quadratic in Nm as seen in Algorithm
1, dominates the computational time. From this, we have that
the function τ(·) can be obtained empirically by fitting a
second order polynomial in Nm to the computational times.

A more precise, closed-form, structure on τ(·) can be
obtained as follows. Suppose each mixture is reduced to size
Nk−1,m at time k − 1. After propagation, each mode will
have at most

∑
mNk−1,m =: N̄k components. From this,

line 4 at time k in Algorithm 1 takes time proportional to
MN̄k(N̄k − 1)/2. If we were to reduce each mixture to the
minimum size of 1, line 21 in Algorithm 1 would take time
proportional to M(N̄k − 1)(N̄k − 2)/2. However, reducing to
Nk,m components instead of 1, we save Nk,m(Nk,m − 1)/2
updates in the array di,j,m. Summing the three contributions
above from lines 4 and 21 and also that from the Kalman filter,
the computational time at time k is proportional to:

M(N̄k − 1)2 −
M∑
m=1

Nk,m(Nk,m − 1)

2
+Mτ0N̄k , (14)

where the constant τ0 corresponds to the computational time
of the Kalman filters normalized by the time to compute
divergences. The expression above is a function of both Nk,m
and Nk−1,m. Taking into account the discount factor, we can
rearrange the terms in the total computational cost to isolate
the contributions from [Nm,k] and obtain

τ([Nm,k]) ∝ 2γM

( M∑
m=1

Nk,m − 1

)2

+ τ0

M∑
m=1

Nk,m


−

M∑
m=1

Nk,m(Nk,m − 1) .

Remark 2. Finding an exact value function and such a
simple control was possible due to the linear dynamics in
(10), which is a consequence of Theorem 1. The same would
not be possible if errors were aggregated using the triangle
inequality.

Remark 3. The given controller is suboptimal in a number
of ways. In the first place, we are dealing with upper bounds
on error sizes and not the real errors. Secondly, Ek is not a
real state since it does not fully describe the full probability
densities. Third, our model does not take into account how the
mixture sizes Nk.m influence the range of approximation errors
at future times. Lastly, we have merely provided a rollout
policy and, on top of that, we have no guarantee that (13)
gives the global minimum.

In the next sections we discuss different types of divergences
that can be employed with the presented framework.
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IV. PRECISION CONTROL USING f -DIVERGENCES

An important class of convex divergences is given by the
so-called f -divergences. For a convex function f such that
f(1) = 0 , the f -divergence Df of the probability measures
ν1 with respect to ν2 is defined as

Df (ν1‖ν2) =

∫
f

(
dν1

dν2

)
dν2

when ν1 is absolutely continuous with respect to ν2 (see [11]
for a definition in the general case and for further properties).
Due to the convexity of the map (x, y) 7→ xf(y/x), Df is
jointly convex on (ν1, ν2).

Further properties of f -divergences are Df (ν1‖ν2) ≥ 0
and, if f is strictly convex at 1, Df (ν1‖ν2) = 0 if and
only if ν1 = ν2. If P is a Markov transition operator,
then Df (ν1‖ν2) ≥ Df (Pν1‖Pν2), which means that f -
divergences are non-expansive under the time evolution of
dynamical systems. This implies that f -divergences tend to
contract (or at least not expand) during the propagation step of
a Bayes filter. However, they still may expand during the Bayes
step when additional information is added through observation.

Some notorious divergences in probability theory are f -
divergences. For f(t) = |t − 1|, we have the total variation
distance TV(·, ·) := Df (·‖·). For f(t) = t ln t, we have
the Kullback-Leibler divergence KL(·, ·) := Df (·‖·). For
f(t) = − ln t we have the reverse Kullback-Leibler divergence
RKL(·, ·) := Df (·‖·). For f(t) = 1

2 (
√
t − 1)2, we have

the squared Hellinger distance H2(·, ·) := Df (·‖·). And,
for f(t) = (t − 1)2, we have the chi-squared divergence
χ2(·, ·) := Df (·‖·). From the above divergences, only TV and
H2 are symmetric. In addition, TV and H are true distances.

The optimal values for (γt, ν) in (5) can be defined by
means of a min-max problem. When a Nash-equilibrium
(γ∗t , ν

∗) exists, it is always the case that γ∗t = ν∗. Indeed,
given a choice ν = ν∗, the bound D̄ is minimized by
setting γt = ν∗. For this reason, γ∗t often coincides with the
barycenter

ν∗ = arg min
ν

(1− t)D(ν1, ν) + tD(ν2, ν) .

When D = Df , [12] showed that the solution ν∗ to this
problem (the so-called entropic means) are as such: ν∗ is the
arithmetic mean of the pdfs in the case of D = KL; ν∗ is
the normalized geometric mean of the pdfs in the case of
D = RKL; ν∗ is the normalized mean of square-roots of the
pdfs in the case of D = H2; and ν∗ is the normalized harmonic
mean of the pdfs in the case of D being the χ2-divergence.

In our case, we are interested in the approximation of
Gaussian mixtures by a single Gaussian. From the means
above, only the normalized geometric mean of Gaussians is
again a Gaussian.

In the following proposition we give merging functions and
bounds D̄t that satisfy condition (5) when P is the space of
multivariate normal distributions on Rd, denoted here by N d.

Proposition 2. Suppose ν1 = N (µ1,Σ1) and ν2 =
N (µ2,Σ2) are merged by γt(ν1, ν2) = N (µ̄t, Σ̄t). Then, the
tuple (µ̄t, Σ̄t, D̄t) satisfies condition (5) when P = N d and
the following f -divergences are used as D = Df :

i. For the total variation distance:

µ̄t = µ1

Σ̄t = Σ1

D̄t = tTV(ν1, ν2) ,

when t < 0.5 and vice-versa when t > 0.5;
ii. for the Kullback-Leibler divergence:

µ̄t = (1− t)µ1 + tµ2

(15)Σ̄t = (1− t)Σ1 + tΣ2 + t(1− t)(µ1 − µ2)(µ1 − µ2)′

D̄t =
1

2

(
ln|Σ̄t|−(1− t) ln|Σ1|−t ln|Σ2|

)
;

iii. for the reverse Kullback-Leibler divergence:

µ̄t =Σ̄t
(
(1− t)Σ−1

1 µ1 + tΣ−1
2 µ2

)
Σ̄t =

(
(1− t)Σ−1

1 + tΣ−1
2

)−1

D̄t =
1

2

(
t(1− t)(µ1 − µ2)′Σ̃−1

t (µ1 − µ2)

− ln|Σ̄t|+(1− t) ln|Σ1|+t ln|Σ2|
)
,

where Σ̃t = tΣ1 + (1− t)Σ2;
iv. for the squared Hellinger distance:

µ̄t =Σ̄t
(
(1− t)Σ−1

1 µ1 + tΣ−1
2 µ2

)
Σ̄t =

(
(1− t)Σ−1

1 + tΣ−1
2

)−1 − εI, ε > 0

D̄B,t =
1

4

(
t(1− t)(µ1 − µ2)′Σ̃−1

t (µ1 − µ2)

− ln|Σ̄t|+(1− t) ln|Σ1|+t ln|Σ2|
)

D̄t =1− e−D̄B,t ,

where Σ̃t = tΣ1 + (1− t)Σ2.

The expressions for merging for the Kullback-Leibler
and the reverse Kullback-Leibler divergences are optimal as
demonstrated in [13]–[15]. In the case of the squared Hellinger
distance, there is no closed form for the optimal merge (see
the related problem of computing the Bhattacharyya centroid
in [16]).

Proof of Propostion 2 (iv). The bound D̄B,t is a bound ob-
tained for the Bhattacharyya distance DB := − ln(1 − H2).
From [16], we have that

DB(ν1, ν2) =
1

4
(µ1 − µ2)′(Σ1 + Σ2)−1(µ1 − µ2)

+
1

2
ln
|(Σ1 + Σ2)/2|
|Σ1|1/2|Σ2|1/2

. (16)

Let us consider the min-max problem for the map ϕ :
(µ̄t, Σ̄t, µ,Σ) 7→ (1− t)DB(ν1, ν) + tDB(ν2, ν)−DB(ν̄t, ν),
where ν = N (µ,Σ). Its derivative on µ is

ϕµ =
1− t

2
(Σ1 + Σ)−1(µ− µ1)

+
t

2
(Σ2 + Σ)−1(µ− µ2)− 1

2
(Σ̄t + Σ)−1(µ− µ̄t)
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and the derivative on µ̄t is ϕµ̄t
= 1/2(Σ̄t + Σ)−1(µ − µ̄t).

Equating both derivatives to zero we obtain

(17)

µ = µ̄t

=
[
(1− t)(Σ1 + Σ)−1 + t(Σ2 + Σ)−1

]−1

·
(
(1− t)(Σ1 + Σ)−1µ1 + t(Σ2 + Σ)−1µ2

)
.

As long as the Hessian

ϕµµ =
1− t

2
(Σ1 + Σ)−1 +

t

2
(Σ2 + Σ)−1 − 1

2
(Σ̄t + Σ)−1

is negative definite, the value of µ that maximizes ϕ is given
by (17). This is indeed the case since the concavity of the
matrix harmonic mean [17, Thm. 4.1.1] grants that[

1− t
2

(Σ1 + Σ)−1 +
t

2
(Σ2 + Σ)−1

]−1

≥ 2
[
(1− t)Σ1

−1 + tΣ2
−1
]−1

+ 2Σ

= 2Σ̄t + 2εI + 2Σ > 2Σ̄t + 2Σ

and ϕµµ < 0.
Now, the derivative of ϕ on Σ is

−1− t
4

(Σ1 + Σ)−1(µ− µ1)(µ− µ1)′(Σ1 + Σ)−1

− t

4
(Σ2 + Σ)−1(µ− µ2)(µ− µ2)′(Σ2 + Σ)−1

+
1

4
(Σ̄t + Σ)−1(µ− µ̄t)(µ− µ̄t)′(Σ̄t + Σ)−1

+
1− t

2
(Σ1 + Σ)−1 +

t

2
(Σ2 + Σ)−1 − 1

2
(Σ̄t + Σ)−1 .

Replacing µ as in (17), this derivative equals

− t(1− t)
4

(Σ̃t + Σ)−1(µ2−µ1)(µ2−µ1)′(Σ̃t+Σ)−1 +ϕµµ .

Then, this derivative is negative definite and the maximum of
ϕ is achieved by Σ = 0. Replacing µ = µ̄t and Σ = 0 in the
expressions for ϕ and DB , we find that ϕ ≤ D̄B,t.

Given this bound, from the convexity of the exponential
and the definition of DB , we have that

e−D̄B,t ≤ e−ϕ

≤ (1− t)(1−H2(ν1, ν)) + t(1−H2(ν2, ν))

1−H2(ν, ν̄t)
.

Rearranging this inequality, we find that

(1− t)H2(ν1, ν) + tH2(ν2, ν)

≤H2(ν, ν̄t)e
−D̄B,t +1−e−D̄B,t ≤H2(ν, ν̄t)+1−e−D̄B,t .

All of the divergences in the proposition have a similar
behavior when approaching zero. In particular, if we are at
equilibrium with Σ̄ = Σ1 = Σ2, then, in the limit of small
mean deviations, we have

(18)D̄t ∝
1

2
t(1− t)(µ1 − µ2)′Σ̄−1(µ1 − µ2)

in the case of the last three divergences.
Notably, Runnalls’ algorithm [5] employs the same merging

function and the same error bound as those of the Kullback-
Leibler divergence in the proposition without, however, con-
trolling the reduced mixture size.

For future reference, we give the χ2-divergence [18] be-
tween two multivariate normals with 2Σ1 > Σ2:

(19)

ln(χ2(ν1, ν2))) =
1

2
(2µ1−µ2)′(2Σ1 − Σ2)−1(2µ1−µ2)

+
1

2
ln|2Σ1 − Σ2|−µ′1Σ−1

1 µ1

+
1

2
µ′2Σ−1

2 µ2 − ln|Σ1|+
1

2
ln|Σ2| .

V. PRECISION CONTROL USING THE WASSERSTEIN
DISTANCE

The limit behavior in (18) shows that information diver-
gences always weight mean deviations according to the pos-
terior covariance matrix. However, there might be situations
in which we want to weight mean components differently,
according to some metric of interest in Rd. This case is
captured nicely by the so-called Wasserstein distance. In the
next sections we give the main facts about this distance
and derive suitable merging functions and bounds for it.
Related work that also applies the Wasserstein distance in
Gaussian mixture reduction is found in [19], [20]. Because
our focus is on real-time applications, we derive alternative
faster approximate solutions.

In Section V-C, we show how this distance is connected with
the mean absolute error for matrix weighted norms ‖·‖Q in Rd.
In particular, we find that, in order to control the Q-norm of the
error, one must replace the inverse of the equilibrium posterior
covariance in (18) by a combination of the form Σ̄−1 +f(Q).

A. The Wasserstein Distance

We denote by P2(Rd) the space of probability measures on
Rd with finite second moment.

Definition 1. For ν1, ν2 ∈ P2(Rd), we define the Wasserstein
distance W2(ν1, ν2) between them as

W2
2 (ν1, ν2) := inf

{∫
‖x− y‖2ν(dx, dy) :∫

ν(x, dy) = ν1,

∫
ν(dx, y) = ν2

}
= inf

{
E
[
‖X − Y ‖2

]
: X ∼ ν1, Y ∼ ν2

}
.

Intuitively, W2
2 measures the expected squared distance in

Rd between random variables X ∼ ν1 and Y ∼ ν2 considering
the best possible coupling between them. Differently than f -
divergences, the Wasserstein distance takes into account the
distance on the space where X and Y lie.

Endowed with the distance W2, P2(Rd) is a metric space.
Specifically, W2 is a metrization of the weak topology in
P2(Rd) [21, Thm. 6.9]. The space (P2(Rd),W2) is geodesic
given that any two probability measures are connected by a
minimizing geodesic and, moreover, if one of the measures is
absolutely continuous with respect to the Lebesgue measure,
this geodesic is unique [21, Cor. 7.22, Cor.7.23].

Proposition 3. The function W2
2 (·, ·) is jointly convex:

W2
2 (w1p1 + w2p2, w1q1 + w2q2) ≤

w1W2
2 (p1, q1) + w2W2

2 (p2, q2) . (20)
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Proof. From Definition 1, there exists a random variable i ∈
{1, 2} and a sequence Xn and Yn such that Pr{Xn | i} = pi,
Pr{Yn | i} = qi, Pr{i} = wi and E[‖Xn − Yn‖2 | i]

n−→
W2

2 (pi, qi). Then, Xn ∼ w1p1 + w2p2, Yn ∼ w1q1 + w2q2

and E[‖Xn − Yn‖2]
n−→
∑
i wiW2

2 (pi, qi) and (20) follows
from Definition 1 applied to the left hand side.

Proposition 4 (Sec. 6.2 in [22]; Sec. 2 in [23]). Let γν1,ν2
(t),

t ∈ [0, 1], be a constant-speed geodesic curve from ν1 ∈
P2(Rd) to ν2 ∈ P2(Rd). Then, γν1,ν2(t) is also a barycenter
of ν1 and ν2:

γν1,ν2(t) = arg min
ν∈P2(Rd)

{(1− t)W2
2 (ν1, ν) + tW2

2 (ν, ν2)} .

Moreover, the barycenter is unique when one of the measures
is absolutely continuous with respect to the Lebesgue measure.

The next result states the fact that the space (P2(Rd),W2)
is a positively curved space and allows us to find an upper
bound for the merging error that is considerably tighter than
the bound that would be obtained by a mere application of the
triangle inequality. Indeed, for the case of Dirac measures, the
bound below recovers the corresponding error in Euclidean
space, which is a direct consequence of the law of cosines.

Lemma 5 (Thm 7.3.2 in [24]). For w1 ∈ [0, 1], w2 = 1−w1,
and probability measures ν1, ν2, ν ∈ P2(Rd),

w1W2
2 (ν1, ν) + w2W2

2 (ν2, ν)

≤ w1w2W2
2 (ν1, ν2) +W2

2 (γν1,ν2
(w2), ν)

where γ is a geodesic curve as in Proposition 4. Moreover,
the inequality reduces to equality when the local curvature of
(P2(Rd),W2) is zero, which is the case when ν1, ν2 and ν
are Dirac measures.

From Lemma 5, we have that the Wasserstein distance
satisfies condition (5) with the geodesic γ as a merging
function and with D̄t(ν1, ν2) = t(1− t)W2

2 (ν1, ν2).

Proposition 6 (Thm 2.2 [25], [26]). The Wasserstein distance
between two Gaussian distributions is given in closed-form by

W2
2 (N (µ1,Σ1),N (µ2,Σ2)) = ‖µ1 − µ2‖2 + tr Σ1 + tr Σ2

− 2 tr(Σ
1/2
1 Σ2Σ

1/2
1 )1/2 .

Consider now the subspace N d
0 ⊂ P2(Rd) composed

of d-dimensional zero-mean Gaussian probability measures
and denote by P(d) the set of positive semidefinite matrices
in Rd×d. The next proposition states that N d

0 is a totally
geodesic submanifold of P2(Rd), i.e., any two points in N d

0

are connected by a geodesic that lies in N d
0 .

Proposition 7 ( [27], Example 1.7; [25]). For N (0, V ) ∈ N d
0

and N (0, U) ∈ N d
0 , with U, V positive definite, define

T := U1/2(U1/2V U1/2)−1/2U1/2

and
Γ(t) := [tI + (1− t)T ]V [tI + (1− t)T ] .

Then N (0,Γ(t)) is a geodesic from N (0, V ) to N (0, U)
in (P2(Rd),W2). In addition, Γ(t) is itself a geodesic on
the space P(d) endowed with the metric W2(U, V ) =
W2(N (0, U),N (0, V )).

From Proposition 6, we see that the submanifold of Gaus-
sian measures can be parametrized by the direct sum of
Rd, equipped with the Euclidean distance, and Pd equipped
with the Wasserstein metric. Therefore, the full geodesic from
N (µ1, U) to N (µ2, V ) is given by N ((1− t)µ1 + tµ2,Γ(t)).

B. Approximations of the Wasserstein Geodesics

The geodesics given by Proposition 7 require the com-
putation of matrix square roots, which is disadvantageous
from the perspective of computational time. For example, this
operation may be many times slower than a matrix inversion or
the Cholesky decomposition. We investigate faster alternatives
from approximations of the Wasserstein geodesic.

Two alternative merging functions that come easily to mind
are the arithmetic and harmonic matrix means. One can show
that the harmonic mean leads to a bounded D̄t whereas the
arithmetic mean leads to unboundedness. However, it turns
out (as verified empirically) that the arithmetic mean gives a
tighter approximation of the Wasserstein geodesic for small
distances. This assertion is related to the following theorem.

Theorem 8. For positive definite matrices Σ1 and Σ2, the
Wasserstein distance between them is upper bounded as

W2
2 (Σ1,Σ2) ≤ 1

4
tr(Σ1 − Σ2)Σ−1

1 (Σ1 − Σ2) .

Proof. Let γ(t) = Σ1 + t(Σ2 − Σ1)), t ∈ [0, 1], be a non-
geodesic curve connecting Σ1 and Σ2 on P(d). Since W2 is a
geodesic distance, it is upper bounded by the length of γ(t).
In order to compute the length of γ(t), we first consider the
expression for the metric tensor g that induces W2 and that is
given in [26, Equation (32)]:

gΣ(U,U) =
d∑
i=1

d∑
j=1

σi
u2
ij

(σi + σj)2
,

where Σ = diag(σ1, σ2, . . . , σd) ∈ P(d) and the tangent
vector U = [uij ] is a symmetric matrix in Rd×d. Making
use of the fact that 4σiσj ≤ (σi + σj)

2, we have that

gΣ(U,U) =

d∑
i=1

d∑
j=1

σiσj
(σi + σj)2

σ−1
j u2

ij (21)

≤
d∑
i=1

d∑
j=1

1

4
σ−1
j u2

ij =
1

4
trUΣ−1U . (22)

Since trUΣ−1U is invariant under similarity transformations
(and so are arc lengths), it also defines an upper bound
when Σ is non-diagonal. Incidentally, one can verify that
this bound is tight in the sense that, under the metric
ḡΣ(U,U) = 1/4 trUΣ−1U , the geodesic Γ(t) in Proposition
7 has constant speed and has length equal to the Wasserstein
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distance. Moreover, we see from (22) that the two metrics
coincide in the scalar case as the inequality becomes equality.

Now we can find an upper bound on the arc length of γ(t)
using the upper bound on the metric above. From the definition
of arc length:

W2
2 (Σ1,Σ2) =

(∫ 1

0

√
gΓ(t)(Γ̇(t), Γ̇(t)) dt

)2

≤
(∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt

)2

≤
∫ 1

0

gγ(t)(γ̇(t), γ̇(t)) dt ,

where the first inequality follows from the minimizing prop-
erty of geodesics and the second one follows from convexity.
Using the metric ḡ above, and rearranging terms such that we
have an analytic function of the matrix Z = Σ

−1/2
1 Σ2Σ

−1/2
1 −

I in the integrand, we have

W2
2 (Σ1,Σ2)

≤
∫ 1

0

1

4
tr(Σ2 − Σ1) (Σ1 + t(Σ2 − Σ1))−1 (Σ2 − Σ1) dt

=
1

4
tr(Σ2 − Σ1)Σ

−1/2
1

×
∫ 1

0

(
I + t(Σ

−1/2
1 Σ2Σ

−1/2
1 − I)

)−1

dt× Σ
−1/2
1 (Σ2−Σ1)

=
1

4
tr(Σ2 − Σ1)Σ

−1/2
1 Z−1 ln(I + Z)Σ

−1/2
1 (Σ2 − Σ1) .

Using the fact that ln(I + X) ≤ X for a semidefinite matrix
X , we have

W2
2 (Σ1,Σ2) ≤ 1

4
tr(Σ2 − Σ1)Σ−1

1 (Σ2 − Σ1) .

From Theorem 8 and its proof we see that the Wasserstein
geometry approximates the Euclidean geometry when Σ−1

1 and
Σ−1

2 are close enough so that Γ(t)−1 is approximately con-
stant. This suggests the approximation of γt by the arithmetic
mean MΣ1,Σ2

(t) and of D̄t by (1− t)W2
2 (Σ1,MΣ1,Σ2

(t)) +
tW2

2 (Σ2,MΣ1,Σ2
(t)) so that

D̄t(Σ1,Σ2) ≈ 1

4
t2(1− t) min

{
tr(Σ1 − Σ2)Σ−1

1 (Σ1 − Σ2),

tr(Σ1 − Σ2)MΣ1,Σ2(t)−1(Σ1 − Σ2)
}

+
1

4
t(1− t)2 min

{
tr(Σ1 − Σ2)Σ−1

2 (Σ1 − Σ2),

tr(Σ1 − Σ2)MΣ1,Σ2(t)−1(Σ1 − Σ2)
}
,

where the symmetry of the Wasserstein distance was used
to choose the smallest of the two possible bounds. In our
experiments, to avoid the computation of inverses, we adopt
the loose approximation

(23)min{Σ−1
1 ,MΣ1,Σ2(t)−1}

≈ diagm(max{diag(Σ1)−1,diag(MΣ1,Σ2
(t))−1}) ,

where the maximum is taken elementwise and where diag(·)
denotes the vector of diagonal elements of a matrix and
diagm(·) indicates the diagonal matrix with given entries.

C. Controlling the Mean Absolute Estimation Bias

In this section we show how a proper choice of a Wasser-
stein distance may be used to control the mean absolute
estimation bias. To this purpose, we extend the definition of
W2 above to W2,H by replacing the Euclidean norm by the
matrix weighted norm ‖·‖H , for some positive definite matrix
H .

We restrict our analysis to the system presented in Section
II to take advantage of its mode-independent dynamics in
order to obtain formal bounds between the time-averaged mean
absolute estimation bias and the Wasserstein distance.

Proposition 9. For the hybrid system presented in Section II,
consider the prior probability φ given by the N -component
Gaussian mixture

φ =
N∑
i=1

wiφi :=
N∑
i=1

wiN (µi, Σ̄)

and its Nc-cluster approximation given by the probability
density

φ̃ =

Nc∑
j=1

w̃j φ̃j :=

Nc∑
j=1

w̃jN (µ̃j , Σ̄)

where, for each cluster Cj , w̃j =
∑
i∈Cj

wi, µ̃j =∑
i∈Cj

wi/w̃j µi and Σ̄ is the posterior covariance at equi-
librium. Let xk|k and x̃k|k denote the posterior estimates of
xk when x0 is distributed with priors φ and φ̃ respectively.
Assume that the covariance of posterior means contracts over
time (due to observations) with a rate ᾱ:

E
[
Covw̃j,k,n

(µ̃j,k,n) | x0 ∼ φ̃
]
≤ ᾱkCovw̃j

(µ̃j) ,

where µ̃j,k,n is the posterior mean of xk for prior φ̃j con-
ditioned on the n-th possible mode sequence m

(n)
1:k , n =

1, . . . ,Mk, and wj,k,n is the associated posterior weight.
Let L be the Kalman gain at equilibrium and denote the

initial intra-cluster deviations by ∆µi,0 = µi− µ̃j , for i ∈ Cj .
Then, for constants λ1, λ2 > 0, γ ∈ (0, 1), γ < β1 <

γ−1|λmax(A − LCA)|−2 and γ < β2 < (γᾱ)−1, the
discounted expected absolute estimation bias in a given Q-
norm is upper-bounded by a function of the initial cluster
deviations as follows:

∞∑
k=1

γk−1 E[‖xk|k − x̃k|k‖Q] ≤

Nc∑
j=1

w̃j
∑
i∈Cj

wi
w̃j
W2

2,H

(
φi, φ̃j

)
+ % , (24)

(25)% = 2
λ2ᾱ

1− γβ2ᾱ
σ2

0 +O
(
‖∆µi,0‖4Σ̂−1

)
,

where σ2
0 := trQCovw̃j (µ̃j), Σ̂−1 := A′(AΣ̄A′ + Rw)−1A

and

H =

(
λ1

2
Hβ1 +

1

2

(
λ−1

1

1− γβ−1
1

+
λ−1

2

1− γβ−1
2

)
Σ̂−1

)
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and Hβ1
satisfies the Lyapunov equation

γβ1(A−LCA)′Hβ1(A−LCA)−Hβ1+(A−LCA)′Q(A−LCA) = 0.

Proof. Define the likelihood function for the output sequence
y1:k and the n-th possible mode sequence m(n)

1:k as

`i,k,n : =

∫
p
(
y1:k,m

(n)
1:k |m0, x0

)
φi(x0)dx0

and define ˜̀
j,k,n analogously for φ̃. Likewise, denote by µi,k,n

and µ̃j,k,n the posterior means at time k corresponding to the
n-th mode sequence and to priors φi and φ̃j respectively.

Then, by the hidden Markov structure of the process, the
posterior means xk|k and x̃k|k are given by the sum of the
means for the continuous filters weighted by the posterior
probability for each component:

xk|k − x̃k|k =
∑
i,n

wi`i,k,n
`k

µi,k,n−
∑
j,n

w̃j ˜̀
j,k,n

˜̀
k

µ̃j,k,n

=
∑
j,n

∑
i∈Cj

wi`i,k,n
`k

(µi,k,n − µ̃j,k,n)

−
∑
j,n

 w̃j ˜̀
j,k,n

˜̀
k

−
∑
i∈Cj

wi`i,k,n
`k

 µ̃j,k,n ,

where `k =
∑
i,n wi`i,k,n and ˜̀

k =
∑
j,n w̃j

˜̀
j,k,n and where

in the last equality we collected the intra- and inter-cluster
deviations in separate terms.

Now, recall that the estimation error ek for each Kalman
filter is such that

ek+1 = (I − LC)Aek + Lvk − (I − LC)wk .

Therefore, if two Kalman filters are initialized with means
that differ by ∆µ, this difference will evolve with k ac-
cording to (A − LCA)k∆µ independently of the noise. This
implies that the same evolution will apply for the hybrid
system when we compare posterior means with equal mode
sequences m1:k. Therefore, denoting mean deviations by
∆µi,k = (A − LCA)k(µi − µ̃j), i ∈ Cj , and defining
¯̀
j,k,n =

∑
i∈Cj

wi`i,k,n/w̃j , we can write

(26)xk|k − x̃k|k =
∑
j,n

∑
i∈Cj

wi`i,k,n
`k

∆µi,k −
∑
j,n

w̃j µ̃j,k,n

·
( ˜̀

j,k,n

˜̀
k

−
¯̀
j,k,n

`k

)
=
∑
j,n

∑
i∈Cj

wi
`i,k,n − ˜̀

j,k,n

`k
∆µi,k

−
∑
j,n

w̃j

( ˜̀
j,k,n

˜̀
k

−
¯̀
j,k,n

`k

)
(µ̃j,k,n − µ̃k|k) ,

where in the last equality we used the fact that∑
i∈Cj

wi∆µi,k = 0 and introduced the full posteriors mean
µ̃k|k =

∑
j w̃j

˜̀
j,k,n/˜̀

k µ̃j,k,n multiplying a zero-sum term.

Taking the matrix weighted norm and expectations on y1:k and
m1:k (multiply by `k and integrate), we have

E[‖xk|k − x̃k|k‖Q]

≤
∑
j,n

∑
i∈Cj

wi‖∆µi,k‖Q
∫
|`i,k,n − ˜̀

j,k,n|dy1:k

+
∑
j,n

w̃j

∫
˜̀
j,k,n

∣∣∣∣∣ ¯̀j,k,n˜̀
j,k,n

− `k
˜̀
k

∣∣∣∣∣ ‖µ̃j,k,n − µ̃k|k‖Qdy1:k ,

(27)

where we used the fact that the Kalman filter mean differences
∆µi,k do not depend on yk. Summing and subracting 1 in the
argument of |·|, the last term of (27) can be bounded by

∫ ∑
j,n

w̃j ˜̀
j,k,n

(∣∣∣∣ ¯̀j,k,n˜̀
j,k,n

− 1

∣∣∣∣+

∣∣∣∣ `k˜̀
k

− 1

∣∣∣∣) ‖µ̃j,k,n − µ̃k|k‖Qdy1:k

≤

(∫ ∑
j,n

w̃j ˜̀
j,k,n

∣∣∣∣ ¯̀j,k,n˜̀
j,k,n

− 1

∣∣∣∣2 dy1:k

)1/2

VarQ(µ̃j,k,n)1/2

+

(∫ ∑
j,n

w̃j ˜̀
j,k,n

∣∣∣∣ `k˜̀
k

− 1

∣∣∣∣2 dy1:k

)1/2

VarQ(µ̃j,k,n)1/2

=

(∑
j

w̃jχ
2(¯̀

j,k,n, ˜̀
j,k,n)

)1/2

+
(
χ2(`k, ˜̀

k)
)1/2

VarQ(µ̃j,k,n)1/2

≤ 2

∑
j

w̃j
∑
i∈Cj

wi
w̃j
χ2(`i,k,n, ˜̀

j,k,n)

1/2

VarQ(µ̃j,k,n)1/2 ,

where the first inequality follows from Hölder’s inequality and
VarQ(µ̃j,k,n) is the expected variance of the cluster centers
for prior φ̃; the equality follows from the definition of χ2 in
Section IV and the last inequality follows from the convexity
of f -divergences applied to the χ2 functions.

In order to compute the divergences between `i,k,n and
˜̀
j,k,n, we note that p(y1:k|m0:k, x0 ∼ φi) is a multivariate

Gaussian distribution that may be computed in closed form
offline. Since the likelihoods tend to grow apart with time,
one may use p(y1:∞|x0 ∼ φi) to obtain an upper bound on
their divergences. Alternatively, we provide in the sequence a
looser bound that may be applied in more general situations.

To compute the f -divergence between likelihoods, note that

`i,k,n =

∫
p
(
y1:k,m

(n)
1:k |m0, x0

)
φi(x0)dx0

=

∫
p
(
y1:k,m

(n)
2:k |m

(n)
1 , x1

)
π
m

(n)
1 |m0

φ+
i (x1|m(n)

1 )dx1 ,
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where φ+
i (x1|m1) denotes the prior probability of x1 given

x0 ∼ φi and m1. Then,

Df (`i,k,n, ˜̀
j,k,n) =

∫ ∑
m

(n)
k

˜̀
j,k,nf

(
`i,k,n
˜̀
j,k,n

)
dy1 :k

≤
∫ ∑

m
(n)
k

∫
p
(
y1:k,m

(n)
2:k |m

(n)
1 , x1

)
π
m

(n)
1 |m0

· φ̃+
j (x1|m(n)

1 )f

(
φ+
i (x1|m(n)

1 )

φ̃+
j (x1|m(n)

1 )

)
dx1dy1:k

=
∑
m

(n)
1

π
m

(n)
1 |m0

∫
φ̃+
j (x1|m(n)

1 )f

(
φ+
i (x1|m(n)

1 )

φ̃+
j (x1|m(n)

1 )

)
dx1

where the inequality follows from the convexity of the map
(p, q) 7→ qf(p/q), which allows us to pull out from it the
integration on dx1.

Given that φ̃+
j and φ+

i both have covariance Σ̄+ := AΣ̄A′+
Rw and means that differ by A∆µi,0 for all n and m1, we
can apply the previous equation and (19) to obtain

(28)

χ2(`i,k,n, ˜̀
j,k,n) ≤ χ2(φ+

i , φ̃
+
j )

= exp
(
∆µ′i,0A

′Σ̄−1
+ A∆µi,0

)
− 1

= ∆µ′i,0A
′Σ̄−1

+ A∆µi,0

+O((∆µ′i,0A
′Σ̄−1

+ A∆µi,0)2) .

From the inequality between the Hellinger divergence and
the total variation given in [28], we obtain:(∑

n

∫
|`i,k,n − ˜̀

j,k,n|dy1:k

)2

≤ 8H(`i,k,n, ˜̀
j,k,n)2

≤ 8H(φ+
i , φ̃

+
j )2 = 8

(
1− exp

(
−1

8
∆µ′i,0A

′Σ̄−1
+ A∆µi,0

))
≤ ∆µ′i,0A

′Σ̄−1
+ A∆µi,0 ,

where we used the expression for H2 derived from (16) and
the fact that 1− e−x ≤ x.

Neglecting higher order terms, we replace these bounds in
(27) and apply Hölder’s inequality once again, to find that

E[‖xk|k − x̃k|k‖Q] ≤

Nc∑
j=1

w̃j
∑
i∈Cj

wi
w̃j
‖∆µi,0‖2Σ̂−1

1/2

×


Nc∑
j=1

w̃j
∑
i∈Cj

wi
w̃j
‖∆µi,k‖2Q

1/2

+ 2ᾱk/2σ0

 ,

where Σ̂−1 := A′Σ̄−1
+ A and where we used the assumption

in the proposition to bound VarQ(µ̃j,k,n)1/2.
To compute the discounted cost, we apply Young’s inequal-

ity twice with factors λ1β
k−1
1 and λ2β

k−1
2 to upper bound the

products of the square roots by sums and find that

∞∑
k =1

γk−1 E[‖xk|k − x̃k|k‖Q]

≤
Nc∑
j=1

w̃j
∑
i∈Cj

wi
w̃j

∞∑
k=1

γk−1

[
λ1β

k−1
1

2
‖∆µi,k‖2Q +

λ−1
1 β1−k

1

2

· ‖∆µi,0‖2Σ̂−1 +
λ2β

k−1
2

2
4ᾱkσ2

0 +
λ−1

2 β1−k
2

2
‖∆µi,0‖2Σ̂−1

]

= 2
λ2ᾱ

1− γᾱβ2
σ2

0 +

Nc∑
j=1

w̃j

∑
i∈Cj

wi
w̃j

∆µ′i,0H∆µi,0

 ,

(29)

where we used the fact that Hβ1
=
∑∞
k=1(γβ1)k−1[(A −

LCA)′]kQ[A− LCA]k. From Proposition 6, the last term in
(29) is the sum of the W2

2,H distances as given in (24).

Remark 4. An important consequence of Proposition 9 is
that, by picking an appropriate H-norm for the Wasserstein
distance, we are able to control the mean absolute error for a
given Q-norm within the framework of Section III. Neverthe-
less, this bound on the error cannot be made arbitrarily small
due to the constant term depending on σ2

0 . Compared to (18),
we see that the weight matrix H is a linear combinantion of a
function of the weight matrix Q and of the inverse covariance
Σ̄−1, which appeared in (18).

The contraction with rate ᾱ assumed in the proposition is
a consequence of weight degeneration in Bayesian filtering,
where, as time evolves and we take more process observations,
one hypothesis will tend to have weight one whereas the other
weights will tend to zero.

In choosing H , it would be interesting to enforce the
contraction property (A−LCA)′H(A−LCA) < αH so that
the filter would give a contraction in this particular Wasserstein
space. By definition, this property is already satisfied by
Hβ1 , but it may not be satisfied by Σ̂−1. Nevertheless, this
contraction property is true for the posterior covariance Σ̄−1,
which could have been used instead of Σ̂−1 in the derivations
preceding (28).

In practice, we expect the term associated to σ0 to be much
smaller. To see this, note that the last term in (26) is the
covariance between the approximation error in cluster weights
and the position of cluster centers. The correlation coefficient
between these variables is expected to be small. Since this
term takes an average over Nc weight errors at time 0, those
of which are not strongly correlated, it would be reasonable
to expect an asymptotic correlation coefficient ρ0/

√
Nc.

In order to optimize H , we may take the expected value
on ∆µi,0 in (24) and assume that, given some (steady-
state) covariance matrix Σ0 for mean vectors, variance is
homogeneously distributed among clusters so that

E

Nc∑
j=1

w̃j

∑
i∈Cj

wi
w̃j

∆µ′i,0H∆µi,0

 ≈ trHΣ0

Nc
(30)
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and σ2
0 ≤ trQΣ0. Then, we search for the parameters that

minimize such an expected value: the factors λ1, β1 that
minimize

λ1 trHβ1Σ0 +
λ−1

1

1− γβ−1
1

tr Σ̂−1Σ0

and the factors λ2, β2 that minimize

4ρ2
0λ2ᾱ

1− γβ2ᾱ
trQΣ0 +

λ−1
2

1− γβ−1
2

tr Σ̂−1Σ0 .

Note that the actual values of Nc and (the amplitude of) Σ0

do not play a role in this optimization as they contribute to
both terms in (24).

Also noteworthy, the expected value of W2
2,H given in (30)

is consistent with the assumption in Section III that E[∆(k)] is
constant under policies where Nk is constant, given that Nc

would be a constant over time in this case.

VI. NUMERICAL EXPERIMENTS

We conducted numerical experiments for the system de-
scribed in Section II considering the discretized motion of a
point on the line with linear friction coefficient ζ and with
noisy position and acceleration measurements:

A =

 1 Ts
T 2
s

2

0 1− ζ T
2
s

2 Ts

0 −ζTs 1− ζ T
2
s

2

 , B =

 0
0
1


C =

[
1 0 0
0 0 1

]
,

where Ts = 0.1. The noise covariances were given by Rv =
diagm(2 · 104, 0.1) and Rw = 1

3 · diagm(10−8, 10−5, 10−5).
The packet drop probability was p0 = 0.4. The input u was
given by the signal uk = 5·10−4 sin(2πk 20/T )+4.6·10−2w̃,
where w̃ is a unit-variance white Gaussian noise and where
T = 3000 is the total simulation time.

A. First scenario: two modes and no friction

For the first set of experiments, we defined ζ = 0 and run
125 different realizations (the same set of 125 realizations was
used in each filter) so as to obtain at least 4% precision in the
time cost estimates and at least 2% precision in error cost
estimates. We considered average costs (discount factor γ =
1.0) instead of discounted costs.

As a common metric for all filters, we compare the
absolute estimation error weighted by a matrix Q =
diagm(500, 20, 1)Σ̄−1diagm(500, 20, 1), for Σ̄ being the pos-
terior covariance at equilibrium. This norm indicates that we
give 500 and 20 times more importance to the estimation error
of the position and of the velocity respectively. As in the
asymptotic formula (18), f -divergences are more efficient at
minimizing estimation errors weighted by Σ̄−1. In this sense,
our choice of Q is to highlight that the Wasserstein distance
can adapt to user-desired metrics whereas the f -divergences
cannot.

The value of H was obtained as described in the previous
section setting ρ0 = 0.14 and ᾱ = M−1 = 0.5. For the sake

of comparison, we give the Cholesky factors of the computed
(normalized) H and Σ̄−1 matrices

chol(H) ∝

 1.0 −5.67 −69.88
0 22.11 −5.72
0 0 170.97


and

chol(Σ̄−1) ∝

 1.0 −21.48 177.58
0 16.92 −227.61
0 0 288.45

 .

The angle between these two matrices as given by the trace
inner product is of 59.5o, which demonstrates a substantial
deviation from the behavior of the information divergences as
given by (18). In addition, we have that ∆µ′H∆µ contracts
under the action of (A− LCA) with rate α ≤ 0.99842.
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Fig. 1. Average total cost for ck = ‖ek‖Q+βτk computed from time and
realization averages of the simulated estimation errors ek and computation
times τk in the first scenario. Each line corresponds to the optimal tuning
of the respective algorithm for a given β. Labels refer to Algorithm 1 using
Kullback-Leibler (KL), Wasserstein (W2), Hellinger and Reverse Kullback-
Leibler (RevKL) as divergences. The labels W2Fixed and KLFixed refer
to setting κ0 = 0 (no control) in Algorithm 1 and varying Nmax from 2 to
17 components. The remaining curves refer to Algorithm 1 with Nmax = 30,
the best value of κ0 for each β, and τ0 in (14) given by 6.63 for W2, 3.9
for KL, 4.45 for H2 and 3.28 for RKL. Costs are normalized by the cost
achieved by the Wasserstein distance (W2Control, shown as 0 in the plot).

We have performed experiments with all the proposed di-
vergences. For the sake of comparison, we have also tested the
case in which the number of reduced components is fixed as
in the Runnalls’ approach of [3] so that there is no closed-loop
precision control. For the case of the Wasserstein distance, we
only present here the results for the approximation given by
(23) as they are significantly faster.

The results are summarized in Figures 1 and 2. A first
conclusion is that controlling the number of components
provides an improvement as compared to using a fixed number
of components. A second conclusion is that the KL divergence
is the most error efficient when we require smaller processing
times but it is the worst when we allow larger processing
times. We believe this performance degradation is due to the
moment preserving merge of (15) that, even when the merged
covariance matrices are at equilibrium and are equal, gives
a different covariance matrix. The Wasserstein distance gives
the best results when smaller errors are required. This result
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is expected given that the bounds in Proposition 9 are tighter
for smaller errors.
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Fig. 2. Estimation error cost versus processing time cost for different
parameters κ0 (and hence different user-defined preferences β) and Nmax

in Algorithm 1 as described for the curves in Figure 1.

B. 2nd scenario: switched friction with a total of four modes
In a second set of experiments, we considered the scenario

where the friction coefficient ζ is an unknown switching
process. At each time-step, ζ assumes the value 1 with
probability 0.8 and the value 10 with probability 0.2. As a
consequence, we have a total of 4 unknown modes and the
matrix A may change with the mode. In this case, however,
there is no equilibrium value for the covariance matrices and
the analysis from Section V-C does not hold.

The matrices Q and H were chosen as in the previous
section, but considering the approximation that c = 1 would
hold long enough for the covariances to reach an equilibrium
Σ̄. Again, we run 125 different realizations so as to obtain at
least 5% precision in the time cost estimates and at least 7%
precision in error cost estimates.

The results shown in Figures 3 and 4 indicate that the
closed-loop control of the number of components has become
more advantageous as the number of modes increased. On
the other hand, we notice that in the new scenario the KL
divergence gave the best performance for all time preferences.
To interpret such a change in performance, recall that the
covariance matrices are no longer at equilibrium and consider
the notion of entropic means discussed in Section IV. Notice
that KL is the only divergence whose entropic mean is the
arithmetic mean of the pdfs. Since the pdf of a mixture
is itself an arithmetic mean, the KL divergence is the only
information divergence with the correct target. Regarding the
drawback associated with the moment preserving merge that
we discussed earlier, it seems to not be as important given that
covariances no longer are at equilibrium.
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Fig. 3. Best average cost achieved in the second scenario by each divergence
as a function of the the processing time weight β. The remaining settings were
as in Figure 1. Costs are normalized by the cost achieved by the Wasserstein
distance (shown as 0 in the plot).
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Fig. 4. Estimation error cost versus processing time cost for different
parameters κ0 and Nmax in Algorithm 1 for the second scenario as described
for the curves in Figure 3.

When comparing the performance of H2 and RKL, we see
that the latter gives better results in most scenarios. This might
be due to the fact that the error bound given in Proposition
2 for RKL is tight whereas the error bound for H2 is overly
conservative. At the same time, the proposition gives the same
merging function for both divergences.

Lastly, one must acknowledge that these algorithms were
designed to minimize the probability divergences between the
true posterior and its approximation and that this goal might
not be directly related to the minimization of the estimation
error. For this reason, the lack of monotonicity or convexity of
the graphs in Figures 2 and 4 should not come as a surprise.
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VII. CONCLUDING REMARKS

This paper presented an optimal control formulation to the
problem of controlling the precision of Bayes filters where the
number of filter hypotheses grows exponentially and truncation
is needed. A new approach to probability divergences was
introduced in order to keep track of the aggregated approx-
imation error due to successive truncations. Our numerical
results show that there is an improvement coming from the
closed-loop control of the precision. On the other hand, results
were not conclusive in the sense of demonstrating that one
divergence measure gives superior performance in all cases.

The derivations in Section V-C suggest that the present
framework may be successfully adapted to the case of a bank
of H2 filters such as those given in [29]. The LMI-based
procedure to derive the H2 filters provides, at the same time, a
Lyapunov function that may be used to generate a Wasserstein
distance that contracts along filtering operations.
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Campos, Brazil, in 2004 and 2006 respectively, and
the Ph.D. degree in Electrical Engineering from the
University of California, Santa Barbara, in 2010.
In 2012, he joined the Federal University of Mi-
nas Gerais, where he currently holds a position of
Professor Adjunto in the Department of Electronics
Engineering. His research interests include multi-

agent systems, networked control systems and stochastic hybrid systems.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on February 28,2020 at 17:43:04 UTC from IEEE Xplore.  Restrictions apply. 


