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INSTRUMENTATION AND CONTROL 
 

TUTORIAL 1 – CREATING MODELS OF ENGINEERING SYSTEMS 
 
This tutorial is of interest to any student studying control systems and in particular the EC 
module D227 – Control System Engineering. The purpose of this tutorial is to introduce 
students to the basic elements of engineering systems and how to create a transfer function 
for them. The tutorial is mainly informative and consists of examples showing the derivation 
of models for real hardware systems. The self assessment material is based on basic general 
engineering knowledge. 
 
 
On completion of this tutorial, you should be able to do the following. 
 

• Derive the mathematical models of basic mechanical systems. 
 
• Derive the mathematical models of basic fluid power systems. 
 
• Derive the mathematical models of basic thermal systems. 
 
• Derive the mathematical models of basic electrical systems. 
 
• Recognise the similarity between models of different systems. 
 
• Explain the standard first and second order transfer functions. 

 
• Explain the link between open and closed loop transfer functions. 

 
 
If you are not familiar with instrumentation used in control engineering, you should complete 
the tutorials on Instrumentation Systems. 
 
In order to complete this tutorial, you must be familiar with basic mechanical and electrical 
science. You should also be familiar with the Laplace transform and a tutorial on this may be 
found in the maths section. You can also find tutorials on fluid power on this site. 
 
Tutorial 2 in this series gives a detailed account of electric motor models and you may wish 
to study this first. 
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1. INTRODUCTION 

 
Engineering systems is a very broad area ranging from control of a power station to control of a motor’s 
speed. The student needs to have a broad base knowledge of engineering science in order to understand the 
various elements and see how many of them are mathematically the same (analogues of each other). 
 
Different kinds of engineering systems often conform to similar laws and there are clear analogies between 
electrical, mechanical, thermal and fluid systems. The basic laws which we use most often concern 
Resistance R, Capacitance C, Inductance L and conservation laws. You do not need to study all these in 
detail and the appropriate law will be explained as required. 
 
Here is a table showing the main analogue components. It is useful to note that capacitance is a zero order 
differential equation, resistance is a first order differential equation and Inductance/inertia/inertance is a 
second order differential equation. 
 

MECHANICAL 
 

ELECTRICAL THERMAL FLUID 

Spring 
 
x = C F = (1/k) F 
 

Electrical Capacitor 
 
Q = C V 

Thermal capacitor 
 
Q = C ∆T 

Fluid Capacitor 
 
M = C x ∆p 

Damper 
 
Force = kd x velocity 
F = kd dx/dt 
Torque = kd x Ang.vel 
 

Ohm's Law 
 
V = R I  
V = R dQ/dt 

Heat Transfer Laws 
 
∆T = R Φ  
∆T = R dQ/dt 

 
Fluid friction Laws do 
not conform to this 
pattern. 

Newton's 2nd Law of 
motion 
Force = Mass x acceleration 
F = M d2x/dt2 
 

Law of Inductors 
 
 
V = L  d2q/dt2 

No equivalence Fluid inertance 
 
 
∆p = Ld2v/dt2 

D'Alembert's Principles 
 
∑Force = 0 
∑Moment = 0 
 

Kirchoff's Laws 
 
∑current = 0 

Law of Conservation 
of Energy 
 
∑Energy = constant 

Law of Conservation 
of Mass 
 
∑Mass = constant 

 
Let’s look at the similarity of the various quantities used in these systems. 
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2. SIMILARITY OF ELEMENTS 
 
CAPACITANCE 
 
The symbol C will be used for electrical, thermal and fluid capacitance. Mechanical capacitance is equivalent 
to 1/k for mechanical systems where k is the spring stiffness. 
 
RESISTANCE 
 
The symbol R will be used for electrical and thermal resistance. Mechanical/hydraulic resistance is called the 
damping coefficient and has various symbols. 
 
INDUCTANCE / INERTIA / INERTANCE 
 
The symbol L will be used for electrical inductance and fluid inertance. In mechanical systems, mass M is 
the equivalent property for linear motion and moment of inertia I for angular motion. 
 
OTHER EQUIVALENT PROPERTIES 
 
Q is the symbol for electric charge and quantity of heat. This is equivalent to displacement in mechanical 
systems, these being distance (usually x) or angle (usually θ). 
 
V is the symbol for electric voltage (potential difference or e.m.f) and is equivalent to temperature T for 
thermal systems, Force F for mechanical systems and pressure p for fluid systems. 
 
v or u is the symbol for velocity in mechanical systems and this is equivalent to electric current (I or i) and 
heat flow rate Φ. 
 
3 LAPLACE TRANSFORM and TRANSFER FUNCTIONS 
 
Laplace is covered in detail in later tutorials and in the maths section. The purpose of this transform is to 
allow differential equations to be converted into a normal algebraic equation in which the quantity s is just a 
normal algebraic quantity. In this tutorial we should simply regard it as a shorthand method of writing 
differential coefficients such that: 

     θ s  becomes
dt
θd     θ s  becomes

dt
θd     θ s  becomes

dt
dθ n

n

n
2

2

2
 

 
4 TRANSFER FUNCTIONS 
 
The models of systems are often written in the form of a ratio of Output/Input. If the models are turned into a 
function of s it is called a transfer function and this is usually denoted as G(s). 
 

Input
OutputG(s) =  The output and input are functions of s. 

 
Now let’s examine the mathematical models of some mechanical systems. 
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5. BASIC MODELS OF MECHANICAL SYSTEMS 
 
5.1 GENERAL PROCEDURE 
 
The general procedure for mechanical systems is as follows. 
 
i.  Adopt a suitable co-ordinate system with an appropriate sign convention. For linear motion, up is 

positive and left to right is positive. For rotation anticlockwise is positive and clockwise is negative. 
These may be ignored when convenient. 

ii.  Identify any disturbing forces acting on the system (inputs to the system). 
iii.  Identify displacements and/or velocities (outputs from the system). 
iv.  Draw a free body diagram for each mass showing all the forces and moments acting on it. 
v.  Apply Newton's 2nd Law to each free body diagram (F = Mass x Acceleration). 
vi.  Rearrange the equation(s) into a suitable form for solution by a convenient method. 
 
Note that unless otherwise specified, ignore gravitational effects. 
 
Let’s now examine mechanical elements in detail. 
 
5.2 LINEAR MECHANICAL SYSTEMS. 
 
5.2.1 SPRING 
 
The basic law of a mechanical spring is Force ∝ change in length. The diagram shows the model with 
mechanical symbols and as a block diagram. 

  
Figure 1 

 
The relationship has no derivatives in it may be written as a function of t or s with no transform involved. 
As a function of time we write F(t) = k x(t)   where k is the spring stiffness. 
As a function of s we write F(s) = kx(s) 
This can be arranged as a transfer function such that   C1/k(s)

F
x

==  

C is the reciprocal of stiffness and it is called mechanical capacitance. The use of k is usually preferred in 
mechanics but C is used in systems as it is directly analogous to electrical capacitance.  

 
5.2.2 DAMPER or DASHPOT 

 

 
Figure 2 
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A damper may be idealised as a loosely fitting piston moving in a viscous fluid such that the force is directly 
proportional to velocity. F ∝ v.  Velocity v is the first derivative of distance so F ∝ dx/dt 

The basic law of a dashpot is:  
dt
dxkF(t) d=    kd is the damping coefficient. 

Changed into Laplace form. F = kd s x   

Rearranged into a transfer function  s
k
1(s)

F
x

d
=  

kd is the damping coefficient with units of Force/Velocity or N s/m. The diagram shows the model with 
mechanical symbols and the control block. 
 
5.2.3 MASS 
 
When a mass is accelerated, the inertia has to be overcome and the inertia force is given by Newton’s Second 
Law of Motion   Force = Mass x Acceleration.   Acceleration is the second derivative of x with time. 

Basic Law 2

2

dt
xdMF(t) =  

Changed into Laplace form. F = Ms2 x  

Rearranged into a transfer function  2Ms
1(s)

F
x

=  

 
Figure 3 

5.2.4 MASS - SPRING SYSTEM 
 
For this spring - mass system, motion only occurs in one direction so the system has a single degree of 
freedom. It is normal for the direction of motion to be expressed as the x direction regardless of the actual 
direction. The free body diagram is as shown. The input is a disturbing force F which is a function of time 
F(t). This could, for example, be a sinusoidal force. The output is a motion x which is a function of time x(t). 
Let x be positive upwards. 

 
Figure 4 
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The input force is opposed by the spring force and the inertia force (which always opposes changes in the 
motion as stated in Newton’s third law of motion). 
 
Spring force = k x 
Inertia force = M d2x/dt2 
 
D'Alembert's Principle is that all the forces and moments on the body must add up to zero. In this case it 
means   
 F(t) - kx(t) - M d2x/dt2(t) = 0 
or  F(t) = M d2x/dt2(t) + kx (t)  
 
Changing to a function of s we have    F(s) = Ms2 x + kx = x [Ms2 + k] 
 

( )
k/Ms

1/MF
kMs

Fx(s) 22 +
=

+
=  

This may be shown as a transfer function.
k/Ms

1/M
F(s)
x(s)G(s) 2 +

==  

The block diagram for use in systems is as shown. 

 
Figure 5 

 
5.2.5 SPRING DAMPER 
 
Force balance as a function of time. F(t) = k x + kd dx/dt  
Force balance as a function of s  F(s) = k x + kd s x  

Rearrange into a transfer function. ( ) 1s/kk
1/k(s)

F
x

d +
=  

The units of kd/k are seconds and this is the time constant for the system T = kd/k 

1Ts
1/k(s)

F
x

+
= .This is the standard first order equation which we shall study many times in these tutorials. 

 
Figure 6 
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5.2.6 MASS -SPRING - DAMPER SYSTEM 
 
The input is the force F and the output is the movement x, both being functions of time. 
Spring force   Fs = kx 
Damping force  Fd = kd dx/dt 
Inertia force  Fi = Md2x/dt2 
 
The three forces oppose motion so if the total force on the system is zero then F = Fi + Fd + Fs 

1/k)s(k(M/k)s
1/k(s)

F
xG(s)kx       sxkxMsF(s) kx        

dt
dxk

dt
xdMF(t)

d
2d

2
d2

2

++
==++=++=

If we examine the units of (M/k)1/2 we find it is seconds and this is the second order time constant also with 
the symbol T. The transfer function may be written as 

1Ts δ 2sT
1/k(s)

F
xG(s) 22 ++

==  

δ is the damping ratio defined as δ = kd/Cc   and Cc is the critical damping ratio defined as (4Mk)½. The 

term 2δT is hence 
k

k

kkM2

M2k

4Mk

M/k2k
T

C
k

2 ddd

c

d === and so the forgoing is correct. 

 
Figure 7 

 
This is the standard 2nd order transfer function which will be analysed in detail later. 
 
 
 WORKED EXAMPLE No.1 
 
 A mass – spring –system has the following parameters. 
 
 Stiffness K = 800 N/m   Mass M = 3 kg    Damping Coefficient kd = 20 Ns/m 
 
 i. Calculate the time constant, critical damping coefficient and the damping ratio. 
 
 ii. Derive the equation for the force required when the piston is accelerating. 
 
 iii. Use the equation to evaluate the static deflection when F = 12 N. 
 
 iv. Use the equation to evaluate the force needed to make the mass accelerate at 4 m/s2 at the

 moment when the velocity is 0.5 m/s. 
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 SOLUTION 
 
 i. T = √(M/k) = √(3/800) = 0.0612 seconds  
  cc = √4MK = √(4 x 3 x 800) = 97.97 Ns/m     
  δ = kd/ cc = 20/97.97 = 0.204 
 
 ii. For a constant acceleration s2x = a (acceleration)   and sx = v (velocity) 

  

( )
( )

( )  x800 sx  20x0.00374s 800  s 20s 3xF

 1  0.0612s x 0.204 x 2  s 0.0612800x F

1Ts δ 2sTkxF    
1Ts δ 2sT

1/k(s)
F
x

22

22

22
22

++=++=

++=

++=
++

=

 

  F = 3 a + 20 v + 800 x 
 
 iii. For a constant force and a static position there will be neither velocity nor acceleration so the s 
  and s2 terms are zero.  

  15mmor  m 0.015
800
12      x 800

x
F ===  

  
 iv. For velocity = 0.5 m/s and a = 4 m/s2 
  F = 3 a + 20 v + 800 x = 12 + 10 + 800x = 22 + 800 x 
 
  The deflection x would need to be evaluated from other methods x = v2/2a = 0.031 m 
 
  F = 46.8 N 
 
 
 
 SELF ASSESSMENT EXERCISE No.1 
 
 
1. A mass – spring –system has the following parameters. 
 
 Stiffness K = 1200 N/m   Mass M = 15 kg    Damping Coefficient kd = 120 Ns/m 
 
 i. Calculate the time constant, critical damping coefficient and the damping ratio. 
  (0.112 s, 268.3 Ns/m and 0.447) 
  
 ii. If a constant force of 22 N is applied, what will be the static position of the mass? 
  (18 mm) 
 
 iii. Calculate the force needed to make the mass move with a constant acceleration of 12 m/s2 at the 
  point where the velocity is 1.2 m/s. 
  (396 N) 
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5.3 ROTARY MECHANICAL SYSTEMS 
 
The following is the rotary equivalent of the previous work. 
 
5.3.1 TORSION BAR 
 
This is the equivalent of a mass and spring. A metal rod clamped at one end and twisted at the other end 
produces a torque opposing the twisting directly proportional to the angle of twist. The ratio T/θ is the 
torsion stiffness of the torsion spring and is denoted with a k. 
 
T is torque ( N m) 
θ is the angle of twist (radian) 
k is the torsional stiffness ( N m/rad ) 
 
Balancing the torques we have  T(t) = kθ (t) 
Change to Laplace form.  T(s) = kθ (s) 

Write as a transfer function. 
k
1(s)

T
θ

=  

 
Figure 8 

 
5.3.2 TORSION DAMPER 
 
A torsion damper may be idealised as vanes rotating in a viscous fluid so that the torque required to rotate it 
is directly proportional to the angular velocity. kd is the torsion damping coefficient in N m s/radian 
 

sk
1(s)

T
θ  G(s)      θ skT(s)        

dt
dθkT(t)

d
dd ====  

 
Figure 9 
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5.3.3 MOMENT OF INERTIA 
 
Rotating masses oppose changes to the motion and Newton's 2nd law for rotating masses is T = I d2θ/dt2  
I is the moment of inertia in kg m2. 

2
2

2

2

Is
1(s)

T
θ  G(s)     θs I  T(s)     

dt
θdIT(t) ==== . Note many text books also use J for moment of inertia. 

 
Figure 10 

 
 
 

 SELF ASSESSMENT EXERCISE No.2 
 
 Derive the transfer function for a mass on a torsion bar fitted with a damper and show it is another 

example of the second order transfer function. T is torque and J is moment of inertia. 
  

 
1Ts δ 2sT

1/k   
1/k)s(Jk(J/k)s

1/k(s)
T
θG(s) 22

d
2 ++

=
++

==  
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5.3.4 GEARED SYSTEMS 
 
When a mass is rotated through a gear system, the affect of the inertia is dramatically altered. Consider a 
motor coupled to a load through a speed changing device such as a gear box. There is damping (viscous 
friction) on the two bearings. 

 
Figure 11 

θm is the motor rotation and θo the output rotation. The gear ratio is Gr = θo/θm 
Since this is a fixed number and is not a function of time, the speed and acceleration are also in the same 
ratio.  
 dθm/dt = ωm dθo/dt  = ωo Gr = ωo/ωm   ω is the angular velocity 
 
 d2θm/dt2= αm d2θo/dt2 = αo Gr = αo/αm    α is the angular acceleration. 
 
The power transmitted by a shaft is given by Power = ωT. If there is no power lost, the output and input 
power must be equal so it follows that 
   ωm Tm = ωo To  hence 
    Tm = ωo To /ωm = GrTo    
(In reality friction significantly affects the torque) 
 
Consider the inertia torque due the inertia on the output shaft Io. 
To = Ioαo  = Io αm x  Gr Tm = To  x Gr =  Io αm  x  Gr2 
 
Now consider the damping torque on the output shaft. 
 To = kdo ωo = kdo ωmGr  Tm = To  x Gr =  kdo ωm  Gr2 
 
Now consider that there is an inertia and damping torque on the motor shaft and on the output shaft. The total 
torque produced on the motor shaft is 
 

 Tm =  Imαm + kdm ωm +  Gr To 
 To  = Ioαo  + kdo ωo 
 Tm =  Imαm  + kdm ωm +  Gr { Ioαo  + kdo ωo} 
 Tm =  Imαm  + kdm ωm + Gr2 Io αm +   Gr2 kdo ωm 
 Tm =  αm  (Im +Gr2 Io) +  ωm (kdm  +Gr2 kdo)  
 
(Im +Gr2 Io) is the effective moment of inertia Ie and (kdm  +Gr2 kdo) is the effective damping coefficient kde.   
 
The equation may be written as   Tm = αm (Ie) + ωm (kde)  
 
In calculus form this becomes   Tm  = d2θ/dt2 (Ie) + dθ/dt (kde)   
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Changing this into a function of s we have Tm(s) = s2θ(Ie) + sθ (kde) = sθ{sIe +  kde} 
 
The output is the motor angle and the input is the motor torque so the geared system may be presented as a 
transfer function thus. θ (s)/Tm (s) = (1/Ie)/s{s + Kde/Ie} 
 

 
Figure 12 

 
 
 WORKED EXAMPLE No.2 
 
 A DC Servo motor has a moment of inertia of 0.5 kg m2. It is coupled to an aerial rotator through a gear 

reduction ratio of 10. The driven mass has a moment of inertia of 1.2 kg m2. The damping on the motor 
is  0.1 N m s/rad and on the rotator bearings it is 0.05 N m s/rad. 

 
 Write down the transfer function θ/Tm in the simplest form. Calculate the torque required from the motor 

to  
 
 i. Turn the aerial at a constant rate of 0.02 rad/s. 
 
 ii. Accelerate the rotator at 0.005 rad/s2 at the start when ω = 0 
 
 SOLUTION 
 
i. Ie = (Im +Gr2 Io) = (0.5 + 102 x 1.2) = 120.5 kg m2. 
 Kde = (kdm  +Gr2 kdo) = (0.1 + 102 x 0.05) = 5.1 N m s/rad. 
 θ (s)/Tm (s) = (1/Ie)/s{s + Kde/Ie}  

 
( )

5.1ω 120.5α  T

ωKαIT
/Ikss

1/I
(s)

T
θ

m

deem

ede

e

m

+=

+=

+
=

 

  
 If the rotator is moving at constant speed α (acceleration) is zero. Hence: 
 Tm = 5.1ω =  5.1 x 0.02 = 0.102 Nm 
 
ii. When accelerating at 0.005 rad/s2 the motor acceleration is 10 times larger at 0.05 rad/s2. 
 
 Tm = 120.5α + 5.1ω = 60.25 Nm when ω = 0 
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 SELF ASSESSMENT EXERCISE No.3 
 
 A DC Servo motor has a moment of inertia of 12 kg m2. It is coupled to an aerial rotator through a gear 

reduction ratio of 4. The driven mass has a moment of inertia of 15 kg m2. The damping on the motor is  
0.2 N m s/rad and on the rotator bearings it is 0.4 N m s/rad. 

 
 Calculate the torque required from the motor to  
 
 i. Turn the aerial at a constant rate of 0.5 rad/s. (3.3 N) 
 
 ii. Accelerate the rotator at 0.02 rad/s2 at the start when ω = 0  (20.16 Nm) 
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6. THERMAL SYSTEM MODELS 
 
6.1 HEATING and COOLING 
 
Consider a mass M kg at temperature θ1. The mass is placed in a hot environment at temperature θ2 and heat 
Q is transferred into the mass causing its temperature to rise. The system could be for example, a resistance 
thermometer, and we want to know how long it takes for the sensor to warm up to the same temperature as 
the liquid. 

                                      
Figure 13 

The laws of heat transfer tell us that the temperature rise is directly proportional to the heat added so: 
dQ = Mc dθ1 = C dθ1  
 

c is the specific heat capacity. C = Mc is the thermal capacitance in  Joules/Kelvin. 

Divide both sides by dt and:  
dt

dθ
CΦ

dt
dQ 1==  

The rate of heat transfer into the mass is Φ = C dθ1/dt and the rate is governed by the thermal resistance 
between the liquid and the mass. This obeys a law similar to Ohm’s Law so that: 
  
  Φ = (θ2 - θ1)/R     R is the thermal resistance in  Kelvin per Watt. 
 

Equating for Φ we have  
RC

θθ
dt

dθ
             

R
θθ

dt
dθ

C 211211 −
=

−
=  

 
RC
θ

RC
θ

dt
dθ 211 =+  

In all systems, the product of the resistance and capacitance is the time constant T so we have 

 
T
θ

T
θ

dt
dθ 211 =+  

Changing from a function of time into a function of s we have 

 
1)(Ts

1(s)
θ
θ

     θ1)(Tsθ        
T
θ

T
θ

sθ
2

1
21

21
1 +

==+=+  

 
Figure 14 

 
Note that this transfer function is the same standard first order equations derived for the spring - damper 
system and thermal capacitance C is equivalent to 1/k and resistance R is equivalent to kd. 
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6.2 INDUSTRIAL HEATING SYSTEM 
 
The diagram shows a schematic of an industrial process for controlling the temperature of a tank of liquid. 
The pneumatic controller will not be explained here but it has an input temperature set by adjustment of the 
control. The temperature of the liquid is measured with a suitable device and turned into a standard signal in 
the range 0.2 – 1 bar. This is connected to the controller and pressure sensing devices produce another air 
signal (0.2 – 1 bar) depending on the error. This is sent to a valve that is opened pneumatically working on 
the standard range. The overall result is that if the liquid is too cool, steam is allowed through to heat the 
liquid. 
 
If the valve opened instead of closing and a cooling fluid was used instead of steam, the system control is by 
cooling. 
 
The control equipment could just as likely be all electronic. Pneumatics are used in dangerous environments 
such as heating up oil tanks.  
 

 
Figure 15 

The model for the above system will not be derived here but it will be more complicated than simply  

1)(Ts
1(s)

θ
θ

 
2

1
+

= because the controller has the facility to do more than proportional control. (Three term 

control is covered in later tutorials) 
 
 
 
 WORKED EXAMPLE No.3 
 

 A simple thermal heating system has a transfer function 
1)(Ts

1(s)
θ
θ

 
i

o
+

=  

 The temperature of the system at any time is θo and this is at 20oC when the set temperature θi is 
changed from 20 oC to 100 oC. The time constant ‘T’ is 4 seconds. Deduce the formulae for how the 
system temperature changes with time and sketch the graph. 
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 SOLUTION 
 

 ooi
i

o θTsθθ     
1Ts

1
θ
θ

+=
+

=  

 θi is a constant (100oC) at all values of time after t = 0 (the start of the change). 

  
dt

dθ
Tθ Tsθθ o

ooi ==−  

 

dt
dxT

dt
dθ

T   x becomesequation  Thedx     dθ - and ateDifferenti

 xθθLet     

o
o

oi

−===

=−
 

 Rearrange and 
x

dx
T
dt

=−  

 Integrate without limits  Aln(x)
T
t

+=−  

 Substitute for x   A)θ-ln(θ
T
t

oi +=−  

 When t = 0, θo = starting temperature = θ1   Hence 

  )θ-ln(θ- A A     )θ-ln(θ0
T
t

1i1i =+==−               θi - θ1 =  change in temperature ∆θ 

 Substitute for A and 
∆θ

)θ-(θ
ln  ) θ ln(∆)θ-ln(θ

T
t oi

oi =−=−  

 Take anti logs and 
∆θ

)θ-(θ
 e oiT

t
=

−  

 
T
t

io

oiT
t

e ∆θθθ

)θ-(θ e ∆θ

−

−

−=

=
 

 Put in the values T = 4      ∆θ = 100 – 20 = 80    θi = 100 
 
 θo = 100 – 80e-t/4      Evaluating and plotting produces the result below. It is an exponential growth. 

 

 
Figure 16 
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7. HYDRAULIC SYSTEM MODELS 
 
The basic theory for hydraulic and pneumatic components may be found in the tutorials on fluid power. 
 
7.1 HYDRAULIC MOTOR 

The following is the derivation of a model for use in control 
theory. The formula relating flow rate Q and speed of rotation ω 

is 
dt
dθkωkQ qq ==     

kq is a constant known as the nominal displacement with units 
of m3 per radian. θ is the angle of rotation in radian. Written as 
a function of s this becomes Q = kq sθ  
 
If we take the flow rate as the input and the angle of rotation as 

the output the transfer function is:
sk

1
Q
θG(s)

q
==  

The formula that relates system pressure p to the output torque 
T is T = kq p 
 
If pressure is the input and torque the output then      

Figure 17    qk
p
TG(s) ==  This is a further definition of the constant kq. 

 
 WORKED EXAMPLE No.4 
 
 A hydraulic motor has a nominal displacement of 8 cm3/radian. Calculate the torque produced at a 

pressure of 90 bar. 
 
 SOLUTION 
 
 T = p kq = 90 x 105 (N/m2) x 8 x 10-6 (m3/rad) = 72 Nm 
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7.2 HYDRAULIC CYLINDER 
 

 
Figure 18 

 
The flow rate and movement are related by the law Q = A dx/dt. Expressed as a transfer function with x 

being the output and Q the input we have:
As
1

Q
xG(s) ==  

Force and pressure are related by the law F = pA. The transfer function with p as the input and F as the 

output is: A
p
FG(s) ==  

 
7.3 MODEL FOR A FLOW METERING VALVE AND ACTUATOR 
 

 
Figure 19 

 
The input to the system is the movement of the valve xi. This allows a flow of oil into the cylinder of Q m3/s 
which makes the cylinder move a distance xo. 
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Making a big assumption that for a constant supply pressure the flow rate is directly proportional to the valve 
position we may say Q = kv xi 
 
kv is the valve constant and examining its units we find they are m2/s 
 
The area of the piston is A m2. 
 
The velocity of the actuator is v = dxo/dt and this is related to the flow and the piston area by the law of 

continuity such that       
dt

dx
AxkQ o

iv ==  

Changing to a function of s this becomes kv xi = Asxo  

Expressed as a transfer function we have 
)s(A/k

1(s)
x
x

G(s)
vi

o ==  

The units of A/kv are seconds and we deduce this is yet another time constant T. 

Ts
1(s)

x
x

G(s)
i

o ==  

Note that this is not quite the standard first order equation 1/{Ts+1} and the difference is that the output  will 
keep changing for a given input, unlike the previous examples where a limit is imposed on the output. 
 
If the actuator is a motor instead of a cylinder the equation is similar but the output is angle instead of linear 
motion.  
 
 
 
 WORKED EXAMPLE No.5 
 
 A hydraulic cylinder has bore of 90 mm and is controlled with a valve with a constant kv = 0.2 m2/s 
 
 Calculate the time constant T.   Given that xi and xo are zero when t = 0, calculate the velocity of the 

piston and the output position after 0.1 seconds when the input is changed suddenly to 5 mm. 
 
 SOLUTION 
 
 A = πD2/4 = 6.362 x 10-3  m2 
 
 T = A/kv = 6.362 x 10-3 / 0.2 =  0.032 seconds 
 

 

   m/s 0.156  
s 0.032
m 0.005

T
x

 velocity 
dt

dx
     x

dt
dx

T

xTsx

    
Ts
1(s)

x
x

G(s)

io
i

o

io

i

o

=====

=

==

 

 
 Velocity = distance /time         distance = xo = v t = 0.156 x 0.1 = 0.0156 or 15.6 mm assuming the 

velocity is constant. 
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 SELF ASSESSMENT EXERCISE No.4  
 
1. A hydraulic motor has a nominal displacement of 5 cm3/radian. Calculate the torque produced at a 

pressure of 120 bar. 
 (60 N m) 
 
2. A hydraulic cylinder has bore of 50 mm and is controlled with a valve with a constant kv = 0.05 m2/s 
 
 Calculate the time constant T.   Given that xi and xo are zero when t = 0, calculate the velocity of the 

piston and the output position after 0.2 seconds when the input is changed suddenly to 4 mm. 
 
 (0.039 s, 0.102 m/s and 20 mm) 
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7.4 ADVANCED HYDRAULIC MODEL 
 
Consider the same system but this time let the actuator move a mass M kg and have to overcome a damping 
force. Further suppose that the valve now meters the pressure and not the flow rate such that the pressure 
applied to the cylinder is  p = kvxi. Consider the free body diagram of the actuator. 

 
Figure 20 

 
The applied force is due to pressure Fd and this is determined by the pressure acting on the area A such that:  

 Fp  = pA. 
 
The applied force is opposed by the inertia force Fi and the damping force Fd. 
 

Fi = M d2xo/dt2 and Fd = kd dxo/dt. 

Balancing forces gives 
dt

dx
k

dt
xd

MpA o
d2

o
2

+=  

Substituting p = kvxi. we have 
dt

dx
k

dt
xd

MAxk o
d2

o
2

iv +=  

In Laplace form we have odo
2

iv sxkxMsAxk +=    

Rearranging it into a transfer function. 
)s/Ak(k)s(M/Ak

1(s)
x
x

G(s)
vd

2
vi

o

+
==  

If we examine the units we find M/Akv = T2 where T is a time constant. 
The critical damping coefficient is  Cc = √(4 M A kv) and the damping ratio is δ kd/Cc 

The transfer function becomes:  
Ts δ 2sT

1(s)
x
x

G(s) 22
i

o

+
==  

 
Figure 21 

 
Note the similarity with the standard 2nd order equation 1/{T2s2 + 2δTs + 1}. The difference is again due to 
there being no limitation on the output. If the actuator is a motor instead of a cylinder, the transfer function is 
similar but the output is angle and angular quantities are used instead of linear quantities. 
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 WORKED EXAMPLE No.6 
 
 A hydraulic cylinder has bore of 90 mm and moves a mass of 80 kg. It is controlled with a valve with a 

constant kv = 20000 Pa/m. The damping coefficient is 180 Ns/m. 
 Calculate the time constant T, Cc and δ. 
 Given that xi and xo are zero when t = 0, calculate the initial acceleration of the mass when the input is 

changed suddenly to 5 mm. 
 Calculate the acceleration when the velocity reaches 2 mm/s. 
 Calculate the velocity when the acceleration is zero. 
  
 SOLUTION 
 
 A = πD2/4 = 6.362 x 10-3  m2 
 T = √(M/Akv)= √{80/(20000 x 6.362 x 10-3)  =  0.793 seconds 
 Cc = √(4 M A kv) = 201.78 Ns/m 
  δ =  kd/Cc = 0.892 

 
Ts δ 2sT

1(s)
x
x

G(s) 22
i

o

+
==  or  in terms of time  

 xi = (T2 x acceleration) + (2δT x velocity) 
 
 The initial velocity is zero. 0.005 = 0.7932 a + 0    a = 7.952 x 10-3 m/s2 
 When v = 0.002   
 0.005 = 0.7932 a + (2 x 0.892 x 0.793 x 0.002) 
 a = {0.005 - (2 x 0.892 x 0.793 x 0.002)}/0.7932  = 3.452 x 10-3 m/s2 
 
 The system initially accelerates and will eventually settle down to a constant velocity with no 

acceleration. Put a = 0. 
 0.005 = 0 + (2 x 0.892 x 0.793) x velocity 
 velocity = 0.00353 m/s or 3.53 mm/s. 
 
 
 
 SELF ASSESSMENT EXERCISE No.5 
 
 A hydraulic cylinder has bore of 50 mm and moves a mass of 10 kg. It is controlled with a valve with a 

constant kv = 80 Pa/m. The damping coefficient is 2 Ns/m. 
 
 Calculate the time constant T, Cc and δ. (7.98 s, 2.5.7 Ns/m and 0.798) 
 
 Given that xi and xo are zero when t = 0, calculate the initial acceleration of the mass when the input is 

changed suddenly to 10 mm. (0.157 mm/s2) 
 
 Calculate the acceleration when the velocity reaches 0.1 mm/s. (0.137 mm/s2) 
 
 Calculate the velocity when the acceleration is zero. (0.785 mm/s) 
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8. ELECTRIC SYSTEM ELEMENTS MODELS 
 
8.1 RESISTANCE 

Applying Ohm's Law we have V = I R  V/I = R   
This may be a function of time or of s. 
The equation may be expressed in terms of charge Q. 

Since I = dQ/dt    I(s) = sQ hence sR(s)
Q
VG(s) ==  

This is similar to the model for the damper. 
 Figure 22 
 
8.2 CAPACITANCE 

The law of a capacitor is Q = C V   V/Q = 1/C  
This is similar to the model for spring. 
Differentiating with respect to time we have dQ/dt = C dV/dt 
dQ/dt is current I so the equation may be expressed as I = C dV/dt 
As a function of s this becomes I (s) = C sV 

The transfer function is 
sC
1(s)

I
VG(s) ==  

 Figure 23 
 
8.3 INDUCTANCE 

Faraday's Law gives us 2

2

dt
QdL

dt
dILV ==   

This is similar to the model for a mass and can be either a first or 2nd order equation as 
required. 
Expressed as a function of s we have    V (s) = L sI or Ls2Q 

Qsor    sL(s)
I
VG(s) 2==  

 Figure 24 
 
8.4 POTENTIOMETER 

 
Figure 25 

 
f the supply voltage is constant and the current is negligible, the output voltage V is directly proportional to 
the position x or angle θ so a simple transfer function is obtained.  

p
o k constant (s)

x
V

G(s) ===  (linear) 

p
o k constant (s)
θ

V
G(s) ===  (angular) 
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8.5 R -C SERIES CIRCUIT 
 
The input voltage Vi is the sum of the voltage over the 
resistor and the capacitor so 
Vi = I R + I /Cs 
 
Vi = I (R + 1/Cs) 
 
The output is the voltage over the capacitor so 
 Vo = I/Cs 
 

 Figure 26 

The transfer function is then      
1RCs

1  
1/Cs)I(R

I/Cs(s)
V
V

G(s)
i

o
+

=
+

==  

 The units of RC are seconds and this is another electrical time constant T. The transfer function may be 
written as  

 
1Ts

1  (s)
V
V

G(s)
i

o
+

==  

 
This is the standard first order equation and is the same as both the spring and damper and the thermal 
example. 
 
8.6 L - C - R in SERIES 
 

This is 3 sub-systems in series. In this case we will take the 
output as the voltage on the capacitor and the input as the voltage 
across the series circuit. 
 
The input voltage is the sum of all three voltages and is found by 
adding them up. 

Vi = I R + I sL + I/sC 
 

 Figure 27 
 
The output voltage is Vo = I/sC The transfer function is then 

 

1sRC CLs
1 (s)

V
V

G(s)

1CLsRCs
1  

1/Cs)sLI(R
I/Cs(s)

V
V

G(s)

2
i

o

2
i

o

++
==

++
=

++
==

 

If we examine the units of CL we find it is seconds2 and we have yet another time constant defined as 
T2 = CL and the equation may be rewritten as: 

 
1Ts δ 2  sT

1 (s)
V
V

G(s) 22
i

o

++
==  

The damping ratio δ is defined as 

C
L4

Rδ = and 
C
L4  is called the critical damping value.  

Note this is the standard 2nd order equation identical to the mass-spring-damper system. 
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 WORKED EXAMPLE No.7 
 
 A Capacitance of 200 µF is connected in series with a resistor of 20 kΩ as shown in figure 26. The 

transfer function is 
1)(Ts

1(s)
θ
θ

 
i

o
+

=  

 The voltage across the resistor is suddenly changed from 3V to 10V. 
 
 Calculate the time constant T and derive formulae for how the voltage across the capacitor varies with 

time. Sketch the graph. 
 
 SOLUTION 
 
 T = RC = 20 x 103 x 200 x 10-6 = 4 seconds 
 The derivation is identical to that in example 3 simply changing θ to V we get the result. 

    T
t

io e ∆VVV −
−=  

 Put in the values T = 4      ∆V = 10 – 3 = 8    Vi = 10 
 
 Vo = 10 – 7e-t/4      Evaluating and plotting produces the result below. It is an exponential growth. 

 
Figure 28 

 
 
 
 
 SELF ASSESSMENT EXERCISE No.6 
 
1. Calculate the time constant for an RC circuit with a resistance of 220 Ω and capacitance of 470 nF.  
 (103 µs) 
 
2. Calculate the second order time constant and the damping ratio for a R-L-C circuit with L = 5 µH,        

C= 60 µF and R=6.8 Ω. 
 (17.3 µs and 11.8 ) 
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9 ELECTRIC MOTORS 
 
This is covered in greater depth in tutorial 2. Here are the basic models. 
 
9.1 FIELD CONTROLLED MOTOR, 
 
The main theory of electric motors is covered in another tutorial. It can be shown that for a d.c. servo motor 
with field control 
  T = kf if 
If the motor drives an inertial load and has damping the dynamic equation becomes 

 

d
2

f

f

ffd
2

d
2

d2

2

skIs

k
(s)

i
θG(s)

iks)kθ(IssθkθIsT
dt
dθk

dt
θdIT

+
==

=+=+=

+=

  

This models the relationship between the shaft angle and the 
control current. 

 Figure 29 
 
9.2 ARMATURE CONTROLLED MOTOR 
 

It can be shown that the torque is related to armature voltage 

and resistance by the formula 
a

a R
k

dt
dθkVT 






 −=  

sθkθIsT

sobeforeas damping and inertiaovercomemust torqueThe

d
2 +=

 

Equating we get 

( )

a
aa

2

d
2

a

2

a
aa

ad
2

V
R
k

R
skskIsθ

R
sθkV

R
k

R
kksθVs)kθ(IsT

=







++

−=−=+=

 

 Figure 30 

With rearrangement we find  
a

2
d

2
a

a s/RkskIs
)(k/R

(s)
V
θG(s)

−+
==  

This models the relationship between the angle of the shaft and the control voltage. 
 
Worked examples and self assessment exercise for this section may be found in tutorial 2. 
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10. CLOSED LOOP SYSTEMS TRANSFER FUNCTION WITH UNITARY FEED BACK. 
 
Consider a simple system with an input θi and output θo related by the transfer function G(s). If the system is 
to be a controlled system in which we require the output to change and match the value of the input (set 
value), we must make the input the error θe instead of the set value. The error is obtained by comparing the 
output value with the input value with the signal summing device. This produces the result    θe = θi - θo and 
because θo is subtracted, this idea is called NEGATIVE FEED BACK. The block diagram shows that the 
signal passes around a closed loop hence the name CLOSED LOOP SYSTEM. 

 
Figure 31 

11/G(s)
1or        
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θ
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=
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The transfer function for the closed system is hence 
11/G(s)

1  
θ
θ

 
i

o
+

=  

G(s) is the transfer function of the open loop system. 
 
Let’s revisit the hydraulic open loop transfer functions derived previously. 
 
When the hydraulic valve and actuator is turned into a closed loop system, the two transfer functions 
become: 

1Ts
1  G(c.l) 
+

= for the first order version and 
1Ts δ 2sT

1  G(c.l) 22 ++
= for the second order version. 

 
These models are mathematically identical to the transfer function of the mass-spring- damper and the L-C-R 
circuits. 
 
Note that for any system with an open loop transfer function G(s) the closed loop transfer function with unit 

feedback is 
11/G(s)

1  G cl +
=  
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 WORKED EXAMPLE No.8 
 
 
 An open loop system has a transfer function G(s) = 2/(s2 + 2s + 1). Derive the closed loop function when 

unit feedback is used. 
 
 SOLUTION 
 

 
32ss

2
212ss

2

1
2

12ss
1

11/G(s)
1  G 222cl ++

=
+++

=
+

++
=

+
=  

 
 
 
 
 SELF ASSESSMENT EXERCISE No.7 
 
1. An open loop system has a transfer function G(s) = 5/(4s2 + 2s + 2). Derive the closed loop function 

when unit feedback is used. 
 Gcl = 5/(4s2 + 2s + 7) 
 
2.  An open loop system has a transfer function G(s) = 10/(s3 +5s). Derive the closed loop function when 

unit feedback is used. 
 Gcl = 10/(s3 + 5s + 10) 
 
 


